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ABSTRACT

We are exploring how models can use models of human perception and motor
control to interact directly with interfaces. We present CogDriver, a cognitive driving
model capable of performing a long-duration autonomous driving task in a virtual
simulation environment. This model, built using the ACT-R cognitive architecture
and enhanced with robotic hands and eyes, supports the cognitive-perceptual-motor
knowledge essential for simple human driving. It has two main strengths compared
to other autonomous driving models: (a) it is built upon human-observed driving
behavior, incorporating error-making and learning, and (b) it leverages a cognitive
architecture to provide insights into psychological driving behavior. Compared to
our previous version, this model shows improved endurance, maintaining its driving
state for over 18 h from Tucson to Las Vegas, even under nighttime conditions. The
enhancements were realized through incorporating human-like driving knowledge
representations, and actions. It now includes a model of error handling and several
logical visual cue strategies. The model’s predictions can match certain aspects
of human behavior in fine detail, such as the number of course corrections,
average speed, learning rate, and adaptation to low visibility conditions. This
model demonstrates that (a) perception and action loops with fallback handling
provide a very accessible testbed for examining further aspects of behavior and
(b) the model-task combination supports exploring aspects of human behavior
that remain missing from ACT-R. Model, simulation, and data can be accessed at
https://github.com/christianwasta/DriveBus/tree/drivebus-wasta.
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INTRODUCTION

Current cognitive architectures provide many practical use cases across
fields including obstacle avoidance and navigation (Kotseruba & Tsotsos,
2020; in press). Our approach through cognitive modeling provides the
opportunity to add human factors until a human-like autonomous simulation
is made. Because cognitive architectures (CAs) can develop cognitive models
of various psychological phenomena and tasks (Newell, 1990), they also
provide procedures and structures that align with human behavior, such as
reaction times, error rates and types, and fMRI results.

This paper develops a human-like cognitive model that can perform a
long-term autonomous driving task in a virtual simulation environment.
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The model has two strengths compared to other autonomous driving
models on similar tasks: (a) it built upon human-observed driving behavior,
incorporating error-making and learning, and (b) it leverages a cognitive
architecture to provide insights into psychological driving behavior.

The CogDriver architecture is shown in Figure 1, which shows a closed-
loop system where cognitive reasoning (through production and declarative
memory) interacts with perceptual and motor processes. It begins with the (a)
ACT-R Cognitive Architecture (Anderson, 2007; Ritter et al., 2019), which
serves as the foundation for building themodel. This architecture is composed
of a (a1) cognition layer with production memory, which encodes human
subjects’ procedural knowledge for decision-making, actions and directing
attention to specific targets within the environment. And declarative memory,
which stores subjects’ factual knowledge, retrieved visual information, and
provides motor intuition to guide task execution.

The perceptual/motor layer (a2) includes a vision manager, which manages
visual attention and perception by instructing the eyes to focus on specific
locations in the environment. The visual system processes chunks of
information about an object’s location in the “where”buffer and information
about objects in the visual scene in the “what” buffer. The motor manager
coordinates motor actions, such as steering and keypresses, based on
instructions from the cognition layer. The cognition and perceptual/motor
layers are tightly integrated. The central production system can reason about
chunks of information stored in the visual buffers to guide behavior. In a
driving context, this enables the model to move forward, or steer based on
position data retrieved from the visual buffer. However, the ACT-R model is
not complete with the restriction that interaction knowledge cannot work on
unaltered tasks. In this work, we extend it to include new types of interaction
knowledge and human behavior aspects that were previously missing.

To extend the interaction knowledge of the cognitive model, we use the
(b) interaction management layer to facilitate the synergy between visual and
motor functions. This layer allows the cognitive model to process inputs
and execute outputs through visual functions (e.g., whatIsOnScreen rule
identifies visual patterns, whereIs locates patterns, and getMouseLocation
tracks the mouse’s position) and motor functions (e.g., click simulates
mouse clicks, Keypress replicates key presses, moveCursorTo moves the
mouse to a location). These functions enable the system to interact directly
with an (c) unaltered simulation environment, using the screen’s bitmap
to detect objects and respond accordingly through passing mouse moves,
clicks, and keypresses onto the simulation vehicle. For example, the system
analyzes pixels or symbols to identify objects and locations on the screen,
guiding motor responses like steering or clicking. The integration of these
components ensures the model can dynamically adapt to and interact with
its environment in a human-like manner guided by the cognitive model.
Compared to the previous cognitive driving model for the same simulation
environment (Wu et al., 2023), the model has demonstrated improved
endurance, maintaining its driving state for over 18 h, even under dynamic
changes in the simulation environment (from day to night), achieved through
incorporating human factors in the ACT-R model and interaction layer.
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Figure 1: The CogDriver architecture, composed of (a) a CA that has cognitive
layer encoding procedural and declarative knowledge and a vision and motor layer
encoding perceptual and motor knowledge; (b) an interaction management layer that
bridges the CA and the (c) simulation environment.

The following section introduces the task, the model design and
development, the model evaluation, and the implications in the field of
autonomous driving.

THE TASK

Penn and Teller created the video game, Desert Bus, with the intention of
making a statement about video games. The game has the player drive a
bus in real-time at a maximum speed of 45 mph from Tucson, AZ to Las
Vegas, NV. Each leg takes 360 miles to complete, or at least eight hours at
maximum speed, and the bus continuously drifts to the right. If the player
swerves off the road, the engine stalls, and the bus starts over from Tucson.
If the driver pauses, the bus is towed back as well. The game has no virtual
passengers or other cars on the road. Once the player completes the journey,
the screen fades to black, and they return to the starting point to play again
indefinitely. At night, the road is dark. Figure 1c provides a screenshot of the
game (daytime). Figure 2b shows a night time view.

This game offers the player a first-person view as they carry out tasks, and
the surroundings change dynamically based on their actions. We used the
latest version created by Dinosaur Games and released by Gearbox Software,
based on the unreleased “Smoke and Mirrors” Sega CD game. The game,
Desert Bus VR, can be downloaded for free on Steam for Windows machines
only (store.steampowered.com/app/638110/Desert_Bus_VR/). Desert Bus
VR supports both virtual reality (VR) and 2D (non-VR) environments. All
testing was done in the non-VR environment although future work could
expand support for virtual reality headsets. There were no alterations made
to the game to support the model.
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RELATED WORK

There is related work in cognitive architectures and models of interactions.

Cognition Architecture and Cognitive Models

To create a cognitive driving model, we bring a suite of tools rooted in
cognitive architecture (CAs). CAs are computational frameworks designed
to capture the invariant mechanisms of human cognition. These mechanisms
include functions related to attention, control, learning, memory, adaptivity,
perception, and action. Cognitive architectures propose a set of fixed
mechanisms to model human behavior, functioning akin to agents and aiming
for a unified representation of the mind. By using task-specific knowledge,
these architectures not only simulate but also explain behavior through direct
examination and real-time reasoning tracing. One representative cognitive
architecture is ACT-R, a theory of human cognitive mechanisms embodied in
the ACT-R program, through which we can construct models that can store,
retrieve, and process knowledge, as well as explain and predict performance
(Anderson, 2007). There are currently two primary kinds of knowledge
representations in ACT-R, which are declarative and procedural knowledge.
Declarative knowledge consists of chunks of memory (e.g., apple is a fruit),
while procedural knowledge performs basic operations by moving data
among buffers, like identifying the next instructions to be executed (e.g., to
submit your answer, you must click the submit button). When the model is
driving a bus in a first-person perspective, these pieces of information will
contain information such as what visual items to look at and what tasks to
do next.

ACT-R is not complete, like all models. In this work we extend it to include
new types of interaction knowledge and the capability to interact with all
tasks that have a computer interface that is represented with a screen and
that can be interacted with a keyboard and a mouse. We will also note new
limitations with it that are made clear from this work.

The Architecture of Interaction

Models interact with the world through their visual and motor systems.
The interaction includes processing visual items presented (visual systems),
pressing keys, and moving and clicking the mouse (motor systems).

Specifically, the visual system holds chunks of information about an
object’s location in the “where” buffer and chunks of information about
objects in the visual scene in the “what” buffer. A central production system
can reason about and lead to behavior based on these chunks. For example,
the driving model may move forward, or steer based on the position data
retrieved from the visual buffer (Tehranchi & Ritter, 2018).

Models can interact directly with the simulation (e.g., Jones et al., 2000),
but our approach uses the screen’s bitmap to find objects. Motor output is
put on the USB bus and appears as if a user typed characters or moved the
mouse. Table 1 lists a history of previous cognitive models that interact using
this approach.
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Table 1: Previous cognitive models using this approach to interaction.

Name of Model Interaction Tool Reference

Eyes and Hands ESegman (Tehranchi & Ritter, 2017)
Biased coin
Spreadsheet
Desertbus 1

JSegman
JSegman
JSegman

(Tehranchi & Ritter, 2020)
(Tehranchi & Ritter, 2020)
(Schwartz et al., 2020)

Heads and Tails
DesertBus 2
CogDriver

VisiTor
VisiTor
VisiTor

(Bagherzadeh & Tehranchi, 2022)
(Wu et al., 2023)
(This paper)

This study uses VisiTor (Bagherzadeh & Tehranchi, 2022) as a vision
implementation that receives motor commands from the ACT-R PM module
and sends them to the environment through an Emacs/SLIME link. VisiTor
is a Python software package stored on a public GitHub repository. It was
developed to provide simulated hands and eyes. It provides motor and visual
interaction.

By using VisiTor, ACT-R can engage with any environment while
maintaining operations similar to those of the user. For example, in the
driving simulation, when visual patterns are detected, ACT-R executes
production rules that control the bus through a combination of continuous
forward movements (via the “W”key) and steering controls (via the “A”key).
For example, ACT-R instructs VisiTor to scan the screen for pixel patterns
that activate a production rule to initiate the program.

COGDRIVER

This section starts with capturing intuition and domain knowledge from the
human subjects, followed by the model structure and learning mechanism,
and concludes by examining a model’s driving performance.

Incorporating Human Factors into Model Design

The model, built upon human factors distilled from the behavior of human
subjects in driving simulations, incorporates principles of cognitive model
design for human-like driving simulations. Data collection was conducted (a)
using RUI—a simple keystroke and mouse movement logger (Kukreja et al.,
2006)—to capture keystroke patterns, and (b) through post-game interviews
to investigate how human subjects steered during gameplay. We analyzed
the subjects’ reported eye movements and mapped the reported visual cues
into the ACT-R model’s visual module. Additionally, we analyzed the key
press time intervals and incorporated this data into the design of the hands’
keypress behavior.

First, VisiTor now supports short and long key presses, a key motor factor.
This allows the model to execute motor actions based on detected deviations.
A short key press corrects minor drifts, while a long key press adjusts for
larger deviations, mimicking human motor control in driving.

Second, our extension to ACT-R integrates error logging and a
continuously looping event procedure. Error logging records failures and
unexpected events, improving future iterations by addressing issues like
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missed visual cues or excessive deviations. The looping procedure enables
continuous environmental monitoring and dynamic adaptation, mirroring
human self-monitoring, where drivers constantly scan their surroundings and
adjust accordingly. These features enhance resilience and adaptability, key
traits of human-like decision-making in driving.

Declarative Chunks

The model has two types of chunks, and a total of 12 declarative memories,
which are working memories that tell the model to make the action based on
the visual cues it saw. The first chunk is named “drive” and has two slots,
“strategy”and “state”, with state having parameters as object items. Another
chunk type is “encoding”, which has slots for the screen-x locations of the
two visual cues and a deviation slot.

Procedural Memories

Figure 2 shows how the control loop of the cognitive model simulate a
dynamic driving scenario by processing visual cues and making corrective
actions. The loop begins with detecting left and right road line visual cues,
followed by shifting attention to harvest detailed information. The model
then moves forward and rechecks the environment to ensure updated visual
data. It identifies specific elements, such as the bus location, processes the
positions of the left and right road lines, and calculates the deviation of
the vehicle’s position from the center of the lane. If the deviation exceeds
300 pixels, a long press is applied to steer left for significant correction;
otherwise, a short press is used forminor adjustments. After these corrections,
the model executes a long forward press to maintain its course and loops
back to reassess the environment, creating a continuous cycle of attention,
evaluation, and action to simulate human-like driving behavior.

To improve the model’s performance at night, the revised cognitive model
marked improvements through a few architectural and behavioral areas.
First, it transitioned from a single-reference visual system (monitoring the
center yellow line) to a dual-reference system that tracks both the left and
right white road lines. This improvement was realized by adding productions
that failed to track road lines frequently due to a lack of redundancy. ACT-R
now detects both left and right road lines, and their coordinates are sent to
the Emacs/SLIME link to initiate the driving productions.

Second, additional modifications to VisiTor were made to enable themodel
to see and act more human. The “continue-cycle” and “handle-missing-cue”
procedures imitate how humans self-monitor driving and steering by adding
continuous operation mechanisms. Demonstrated in the “consider-ahead”
production, deviations from the left road line of less than 300 pixels now
result in a “short-keypress,” which keeps the model in the right road lane by
adding error-handling for eyes and hands synergy.

The model uses an explicit goal state to control the model. It contained
13 production rules. Table 2 lists the high-level descriptions of the steps the
model performs and the corresponding production rules.
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Figure 2: Control loop of the model (a, left) and the driver’s view at night (b, right).

Model Evaluation

The model was tested multiple times in nighttime conditions. After testing
the model by running the bus in the middle of the night, a second test
was run from the game’s start to finish. At approximately 8 h of driving,
the environment is visibly dark, but the automatic headlights have yet to
turn on (whereas they are on in Figure 3) . Long and short duration key
presses are essential at 8 h because the bus’s speed is reduced, and the bus
reliably stays in the same lane. The introduction of the ‘my-short-keypress’
function represents a more human-like driving behavior that gives VisiTor
more processing time to differentiate yellow from white road lines. Instead
of relying solely on continuous steering inputs, the model now makes brief,
corrective adjustments when steering left.

As seen in Table 3, The ACT-R output data revealed that the total decision-
making time the model took to detect the first visual cue to action execution
was 0.450 s. The previous model’s action execution time of 0.90 s makes this
model twice as fast, slowly making the model’s reaction time equivalent to
the average of a human, which is around 250 ms.

Testing the model revealed that the bus could now be driven for the entire
360-mile distance. Including the night time environment in Figure 2b using
the improved visual detection.

Table 2: High level description of the steps and the production rules.

High Level Step Descriptions Corresponding Productions

1. When it detects a start visual cue,
attend it, and press the “W” key
using the manual buffer

Go
PerceiveEnvironment
Move-attention
Ahead

Continued
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Table 2: Continued

High Level Step Descriptions Corresponding Productions

2. Clear the visual buffer and attend
to the bus location

Recheck-environment
Danger
Finding-danger
Move-attention-danger

3. Calculate the bus deviation from
the center lane

Where-is-danger
Where-is-center
Calculate-deviation

4. Checks if both cues are missing
and continues to move forward if
true

Handle-missing-cue – Ensures the model
does not stop if visual information is not
immediately found when started

5. Use the manual buffer by pressing
“w” (default, about 100 ms) if the
deviation is less than 300 pixels

Consider-ahead

6. Clear the manual buffer if the
deviation > 300 pixels. Using the
manual buffer, align the bus by
pressing the “w” key for 6 s.

Consider-steer

7. Sets state to perceive and resets
goals

Continue-cycle – Prevents dead-end states
where no production can fire due to
“consider-steer” not firing.

So far, the model has been able to achieve one leg after driving for 18.5
h at an average speed of 20 mph. While this is lower than the top speed of
45 mph, future adjustments and enhancements to the visual cue recognition
will naturally make the bus drive faster, because the model presses the
accelerator after every steering decision.

DISCUSSION AND CONCLUSION

We start by summarizing the contributions and then note the limitations
and future work. CogDriver operates for an average of 18.5 h, with slower
versions exceeding 24 h. This demonstrates how cognitive architectures can
maintain reliable performance while adapting to environmental changes.
After several hours, the model eventually outperforms humans, which
raises interesting issues. CogDriver marks an advancement in autonomous
driving cognitive model. First, the integration of human behaviors to the
model through cognitive architecture is achieved by adding behavioral error
handling and learning improvements to the ACT-R model. Second, the
model’s ability to sustain an 18-h driving record was achieved by human-
like driving knowledge representations, error handling mechanisms, and new
visual cues. Finally, this improvement showcases the capability to establish
human behavioral models by examining human perception, action loops, and
fallback procedures.

These contributions advance both autonomous driving research
and cognitive modeling, showing how integrating human factors and
psychological insights can improve the performance and reliability of
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autonomous systems, particularly in challenging conditions that have
traditionally been difficult for cognitive models to handle.

Limitations and Future Work

One limitation is the need to improve the spatial memory system to assist
when the bus drifts too far left. Another is the absence of physiological factors
such as fatigue and declining correction rates over time. Schwartz et al. (2020)
suggest integrating physiology into ACT-R for greater realism (e.g., use of
ACT-R/Phi, Dancy et al., 2015). We support this and propose testing the
combined effects of fatigue and learning rate on the model (Wu et al., 2023).

The ACT-R+VisiTor platform provides a naturalistic setting for studying
vision, attention, errors, and fatigue—more so than the PsychoMotor
Vigilance Task (PVT; Dinges& Powell, 1985). Future work could incorporate
a fatigue model (Gunzelmann et al., 2009) to study fatigued driving
(Gunzelmann et al., 2011), sleep restriction effects (Bolkhovsky et al., 2018),
visual attention, and other human factors. This setup also offers insights into
how prolonged, repetitive activities like bus driving affect performance.
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