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ABSTRACT

Early detection of Mild Cognitive Impairment (MCI), a precursor to Alzheimer’s disease,
is essential for timely interventions. However, traditional cognitive assessments are
often inaccessible and unsuitable for continuous monitoring. This study presents
a mobile, gaze-based assessment system using eye-tracking as a digital biomarker
for cognitive decline. Fourteen older adults with MCI used gamified apps over four
months, including an emotionally weighted object-tracking task (PAIRS; Paletta et al.,
2020a), an antisaccade task (Mobile Instrumental Recovery of Attention; MIRA; Paletta
et al., 2020b), and the psychomotor vigilance task (PVT; Dinges & Powell, 1985). Eye
movement features such as blink rate and reaction time significantly correlated with
scores of Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005) scores. A
Support Vector Regression model estimated cognitive scores supporting the potential
of mobile eye-tracking for home-based cognitive monitoring and early dementia risk
detection.
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INTRODUCTION

Dementia, particularly Alzheimer’s disease, is a growing global health
concern, with MCI often representing a precursor stage (Petersen et al.,
2014). Early detection of MCI is crucial, as it provides a valuable
opportunity to initiate lifestyle changes or therapeutic interventions
that may slow cognitive decline (Livingston et al., 2020). However,
conventional diagnostic procedures—typically involving neuropsychological
assessments—are resource-intensive, infrequent, and often inaccessible
outside clinical settings (Albert et al., 2011). This gap highlights the need for
scalable, unobtrusive, and user-friendly tools that support regular cognitive
monitoring in real-world environments.

Digital health technologies, particularly those utilizing mobile devices and
embedded sensors, are increasingly recognized as promising solutions for
cognitive screening (Kourtis et al., 2019). Among them, eye-tracking has
emerged as a sensitive modality for detecting early cognitive impairment
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due to its strong association with attention, working memory, and executive
function (Anderson&MacAskill, 2013; Molitor et al., 2015; Crawford et al.,
2005). Importantly, gaze-based measures are non-invasive, require minimal
user input, and can be embedded in engaging digital tasks suitable for home
use.

Figure 1: Mobile cognitive assessment at home using tablet-based embedded eye
tracking and app score analytics.

In this study, we developed a suite of gamified mobile applications
incorporating eye-tracking to assess cognitive performance in older adults
with MCI. The tasks included: (1) an emotionally weighted object-tracking
task (PAIRS), designed to probe attention-emotion interactions relevant
to aging and cognitive decline (Paletta et al., 2020a); (2) an antisaccade
task (MIRA; Paletta et al., 2020b; Figure 1), which has shown sensitivity
to executive dysfunction in MCI (Kaufman et al., 2012); and (3) the
psychomotor vigilance task (PVT), a well-established measure of sustained
attention (Dinges & Powell, 1985). These tasks were administered weekly
over a four-month period, enabling ecologically valid assessment of cognitive
state in home settings.

Participants completed the tasks using mobile devices equipped with
camera-based eye-tracking software. Significant correlations were found
between MoCA total scores and gaze- as well as interaction-derived features,
such as, blink rate, and mean reaction time, supporting the validity
of these features as digital biomarkers. Moreover, a machine learning
model using Support Vector Regression estimated MoCA scores from eye
movement features with a mean absolute error of 2.487 points—comparable
to inter-rater variability in traditional assessments (Nasreddine et al., 2005;
König et al., 2015).

These findings demonstrate the feasibility of mobile gaze-based interfaces
for continuous cognitive monitoring.We experienced a high adherence rate to
MIRA that further support the usability and acceptability of this approach.
By combining principles from human factors, digital health, and cognitive
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neuroscience, this work advances the development of scalable, playful, and
adaptive tools for dementia prevention and early intervention.

Early detection of dementia risk by screening cognitive decline is
fundamental for timely adaptation of lifestyle or interventions. These results
of digital biomarker development indicate successful steps towards frequent
use of mobile gaze-based cognitive assessment. These playful assessment
apps offer a promising potential for future long-term monitoring in dementia
prevention, early detection as well as in numerous dementia care services.

RELATED WORK

Eye-tracking has long been used in controlled laboratory environments
to assess cognitive processes, including attention, memory, and executive
function. These studies have established robust associations between eye
movement patterns and cognitive decline, particularly in populations at risk
for dementia (Molitor et al., 2015). For example, reduced saccade inhibition
and altered fixation durations have been observed in individuals with MCI
and Alzheimer’s disease during tasks requiring executive control and visual
attention (Zhou & Chen, 2021; Kaufman et al., 2012). Traditionally, such
assessments required specialized equipment and lab-based protocols, limiting
scalability and accessibility. However, recent technological advancements
have enabled the deployment of eye-tracking through webcams and front-
facing cameras in mobile devices, making cognitive screening more feasible
in home settings. Webcam-based eye-tracking has demonstrated acceptable
validity for assessing oculomotor behavior, enabling broader population
studies outside research laboratories (Semmelmann & Weigelt, 2018).

Studies have begun leveraging mobile applications that integrate gaze
estimation to conduct cognitive assessments remotely. For instance, Xu et al.
(2021) demonstrated the feasibility of remote cognitive testing using
smartphone-based eye-tracking to detect attentional decline in older adults.
Similarly, Wolf et al. (2022) described different attempts to collect eye
movement features for predictive, early cognitive impairment, supporting the
utility of gaze-based digital biomarkers. The transition from lab to mobile
platforms allows not only for ecologically valid assessment in everyday
environments but also for increased frequency of monitoring, which is
essential for tracking subtle changes over time in at-risk populations. This
shift supports the integration of eye-tracking into daily routines and long-
term dementia prevention strategies, combining accessibility with clinically
meaningful insights.

TABLET-BASED MULTIMODAL INTERVENTION

Tablet-based training interventions have gained attention as accessible and
scalable tools to support cognitive functioning in individuals at risk for
dementia. These digital applications offer engaging, adaptive exercises aimed
at enhancing memory, attention, and executive functions (Lampit et al.,
2014). Studies have shown that app-based cognitive training can lead to
modest improvements in cognitive performance and may help delay cognitive
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decline (Zuschnegg et al., 2023; Gates et al., 2019). Additionally, the
portability and user-friendly nature of tablets make them suitable for older
adults, including those with MCI, supporting continued independent living
and self-guided training.

The research prototype of the Multimodal App (MMA; Paletta et al.,
2021) was further developed into a professional, playful, multimodal training
software BRAINMEE designed for cognitive and sensorimotor activation
(Pszeida et al., 2023). It includes exercises targeting attention, visuospatial
executive function, and motor skills, along with lifestyle-related tasks. The
BRAINMEE app offers structured cognitive training with 44 thematic topics,
each containing 36–47 exercises across 16 types and four difficulty levels,
based on Mini-Mental State Examination scores (MMSE; Folstein et al.,
1975) from <18 to 30. In total, over 6,000 exercises are available in five
languages for the purpose of personalized cognitive support.

A recommender system was developed based on users’ success rates in
completing BRAINMEE exercises, based on the digital results that were
obtained from the gameplay. It analyzed training performance to suggest
either easier or more challenging difficulty levels, dependent on established
low or high performance of the user, respctively. Recommendations
were shown on the tablet as ‘system suggestions’ but were not applied
automatically. Users retained full control and could decide whether to adjust
their training intensity.

DIGITAL BIOMARKERS FROM MOBILE APPLICATIONS

Three apps for MCA (Figure 2) apps were applied during the intervention:

• PAIRS (Paletta et al., 2020a) asks users to regard several emotionally
(positive, neutral, negative) weighted image pairs. Then the images are
rotated so that they appear face-down, like playing cards, and these cards
are moved around to trigger a multi-object tracking task. Finally, it turns
into a pairs game to select the image pairs in a minimum number of trials.

• MIRA (Paletta et al., 2020b) is applied for assessing inhibitory control
through a serious game that asks users to operate with eye movements
(i) to follow and activate (prosaccades) or (ii) disregard and deactivate
(antisaccades) positively and negatively acting avatars, respectively.

• PVT (Dinges & Powell, 19856): The Psychomotor Vigilance Task (PVT)
is a simple reaction time test that measures sustained attention and
alertness. Participants respond to visual stimuli that appear at random
intervals, with lapses and slower reaction times indicating fatigue or
reduced vigilance. It is widely used in sleep and cognitive performance
research, estimating fatigue effects via a gamified cognitive test.

These apps were used in the main study alongside corresponding
questionnaires to identify digital correlates between test scores and digital
events, such as, sensor-based data and game outcome and interaction scores.
During the interaction with the MCA apps, eye-tracking with 30 Hz was
extracted from a Tablet-embedded camera using the SeeSo software from the
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South Korean company VisualCamp1. Raw data were periodically uploaded
via the internet to the research server of JoanneumResearch with a password-
secured interface.

Figure 2: Mobile cognitive assessment (MCA) apps used at home with tablet-based
embedded eye tracking and app score analytics (a) MIRA, (b) PAIRS, (c) Horizontal
gaze coordinate over time (MIRA) in response to stimulus signals (red filled box:
correct antisaccade; red empty box: prosaccade, i.e., an erroneous antisaccade).
(d) Application of the psychomotor vigilance task (PVT).

EXPERIMENTAL RESULTS

Study Description

Firstly, a usability study was conducted; its findings were crucial for adapting
interactions with the BRAINMEE as well as with MCA apps, particularly,
for handling eye-tracking. The pilot study, lasting four months, focused
on implementing the BRAINMEE app intervention and assessing cognitive
performance using the MCA apps continuously.

The study was applied in Western Styria in Austria. it was divided into
two phases and began with 20 participants (18 female, 2 male); during the
course, the number of active participants was reduced to 14. Of the original
20 participants, data from 14 individuals (12 female, 2 male) were included
in the final comparison across time points. Participants had a mean age of
77.64 years (SD = 6.61) and a cognitive score of M = 24.14 (SD = 3.14) on
the MoCA, indicating mild cognitive impairment.

Psychological assessments were primarily conducted using the MoCA
(Nasreddine et al., 2005),MMSE (Folstein et al., 1975), Geriatric Depression

1https://visual.camp/seeso-sdk/ (accessed May 29, 2025)

https://visual.camp/seeso-sdk/
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Scale (GDS; Yesavage et al., 1982), and the Trail Making Test A and B
(TMT-A, TMT-B; Reitan et al., 1958) to evaluate cognitive flexibility.

Phase 1 (duration: two months between points in time T1 and T2)
involved introducing and familiarizing participants with the technologies,
without using the recommender system. Topics in theMCA app were selected
either based on weekly suggestions from care assistants of Soziale Dienste
Südweststeiermark or freely chosen by participants from a seasonally adapted
exercise pool.

Within Phase 2 (duration: two months between points in time T2 and T3),
the recommender was activated and in the topic menu, the most suitable
exercises for each participant’s cognitive or mental state were highlighted on
the Tablet screen.

Results of the Tablet-Based Intervention

The dementia screening using the MoCA revealed a statistically significant,
overall improvement in cognitive deficits, as determined by a paired-samples
t-test (p = .012*, medium effect size with d = 0.68): a significant change
was observed between T1 and T3 with an increase in the MoCA total scores
(ranging from 0 to 30 points) from M = 24.14 (SD = 3.14) to M = 26.21
(SD = 2.54). This corresponds to a total increase of M = 2.07 (SD = 2.94)
points on the MoCA scale over the full 4-month intervention period. The
improvement was particularly measurable between the time points T2 and
T3, during the use of the recommender technology (p =.0007***; strong
effect size with d = 1.09), whereas the first phase (from T1 to T2) without
the use of the recommender technology showed no significant improvement
(p = .3624).

Furthermore, statistically significant correlations between recommended
difficulty level and the difficulty level that were subsequently selected by users
(ρ = .407; p =. 004**) as well as the corresponding success rate (ρ = .304;
p = .036*) were identified.

Digital Biomarkers From Eye-Tracking and Interaction

Correlations. In a first step, correlations between the results of the MoCA
total score and eye tracking features (mean value per eye movement
feature and per participant) as well as digital game scores were computed.
The results demonstrate statistically significant Spearman correlations
between MoCA scores and several derived eye movement features, such as,
(1) fixation duration (MIRA; ρ =.419; p = .017*), (2) sEBR
(PAIRS; ρ = –.554; p = .001**), as well as with (3) mean reaction time
(PVT; ρ = –.508; p = .005**), for details see Figure 3.

Machine Learning. A machine learning model using Support Vector
Regression (Cortes & Vapnik, 1995) was applied on the study data
(n = 14) and resulted in estimating MoCA scores from eye movement
features (fixation duration in MIRA) with a mean absolute error of 2.487
points —comparable to inter-rater variability in traditional assessments
(Nasreddine et al., 2005; König et al., 2015). The model validation with
R-squared (R2

= 0.312) may be accepted for the case of exploratory
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human behavior analysis with noise in the mobile eye tracking based sensor
(Duff, 2012). Factors such as test-retest variability, practice effects, and
individual differences contribute to this phenomenon. For instance, repeated
assessments may be influenced by variables associated with the test itself,
the testing situation, and individual patient factors, leading to increased
measurement error and reduced reliability. This variability can result in lower
R2 values, indicating that a smaller proportion of variance in the outcome is
explained by the model.

Figure 3: Mapping between MoCA total score and eye tracking feature as well as
reaction time: (a) Spontaneous eye blink rate (sEBR; mean) encountered during
interaction with the PAIRS app. (b) Reaction time (mean in ms) during interaction with
the PVT app.

Adherence and Motivation

Adherence. The duration of each of the MCA apps (MIRA, PAIRS, PVT)
was approximately 3 minutes. Participants were instructed to apply each of
the individual apps at least once a week. Within the period of four weeks
(phase 1), the apps were actually applied, as follows, MIRA: M = 9.83
(SD = 14.52) times, PAIRS: M = 6.72 (SD = 6.03) times, PVT: M = 3.53
(SD = 4.67) times which responds to a weekly schedule of using MIRA:
M = 2.46 (SD= 3.63) times, PAIRS M = 1.68 (SD = 1.51) times, PVT
M= 0.88 (SD= 1.17) times. From this data wemay deduce that more playful
tests (MIRA, PAIRS) cause a higher degree of adherence than not gamified
tests (PVT).

Motivation. The aim of the motivation analysis was to quantitatively
demonstrate the connection between individual motivation and engagement
in the study. In the future, this would make it possible to implement
an adaptive recommender based on automatically collected digital data,
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which could respond to users’ current motivation and offer training content
accordingly.

The risk choice model, developed by Atkinson (1957), is part of
expectation-value theories and explains task selection and motivation
strength. It considers two personal factors—hope of success and fear of
failure—and two task factors—goal attractiveness (incentive) and subjective
probability of success. The model assumes that in pure performance tasks,
the incentive is tied to task difficulty: pride increases with harder tasks upon
success, while shame increases with easier tasks upon failure. The resulting
motivation (RM) is calculated as:

RM = (Me ×We × (1–We)) + (Mm × (1–We) × –We)

where Me and Mm are success and failure motives, and We is the probability
of success. The model predicts that success-motivated individuals (Me > Mm)
are most motivated by tasks of medium difficulty (We = 0.5), while failure-
motivated individuals (Me < Mm) tend to avoid challenge. An analysis
based on questionnaires and digital success rates showed that RM correlated
positively with the number of exercises completed (ρ = .453), indicating
that positive motivation strongly supports training adherence and should be
actively fostered.

CONCLUSION AND FUTURE WORK

This study demonstrates the feasibility and effectiveness of mobile, gaze-
based applications for early detection of cognitive decline in older adults
with MCI. Significant correlations between eye-tracking features and MoCA
scores, along with machine learning estimation, highlight the potential of
digital biomarkers for remote cognitive screening.

The playful nature of the apps supported user adherence and engagement,
especially when combined with a recommender system. Future work will
focus on scaling the system for broader clinical and home use, integrating
adaptive personalization based on real-time motivation, and validating the
approach across diverse populations and longitudinal studies. Enhancing
algorithmic accuracy and incorporating additional physiological data may
further improve diagnostic precision and intervention effectiveness in
dementia prevention strategies.
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