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ABSTRACT

This paper presents a research protocol for the estimation of workers’ recovery-
stress states at a manufacturing site using wearable biosignal sensors and validated
psychological assessments. Building on existing models of stress, recovery, and
resilience, we propose the extension of an existing integrative framework — the
Resilience Risk Stratification Model (RRSM; Paletta et al., 2024) — that captures
both physiological strain and recovery dynamics over time. A field study of 2–4
weeks with 20 shop-floor workers will combine continuous biosignal monitoring using
smart wearables — e.g., heart rate (HR), heart rate variability (HRV), motion, and
sleep patterns via Garmin Vivosmart 5 — with repeated psychological testing (e.g.,
RESTQ-Work, NASA-TLX, PSS, RS-13). Wearable-derived features such as resting
heart rate, HR recovery, HRV trends, and exponential recovery metrics (e.g., Time
to Recovery and Area to Recovery) will be extracted. These features will be mapped
onto psychological constructs via machine learning models, supporting early detection
of stress overload and reduced resilience. The outcome will be a multidimensional,
real-time estimate of resilience risk, suitable for feedback to both workers and
supervisors. This methodology contributes to human-centered industrial innovation,
offering a pathway toward adaptive support systems and sustainable well-being and
performance at work.
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INTRODUCTION

The vision for ‘Industry 5.0’ (Renda et al., 2021) moves past a narrow
and traditional focus on technology- or economic-enabled growth of the
existing extractive, production and consumption driven economic model to
a more transformative view of growth that is focused on human progress
and well-being based on reducing and shifting consumption to new forms of
sustainable, circular and regenerative economic value creation.

Mental health and well-being have to be considered on an equal
footing when designing digitalized workplaces in production, such as,
for manufacturing environments. Stress overload can impact work and
organizational success. However, with planning and human-centered
responses, organizations can help build resilience among the workforce
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and enable them to adapt positively with the business. Indeed, the toxic
stress overload caused by a crisis can diminish individual and broader
human capital (Shern et al., 2014). Beyond the visible impact of crises on
personal health, family, and financial stability, sustained toxic stress can
impact the part of the brain responsible for executive function (Isham et al.,
2020). This negative impact can weaken working memory, attention control,
cognitive flexibility, and problem-solving—the cognitive processes that make
people capable and productive both in their personal and professional lives
(Shields et al., 2016). Earlier work on monitoring stress and resilience at
the production site (Paletta et al., 2023; 2024) presented the configuration of
selected wearable biosignal sensor technologies together with the architecture
of the ‘Intelligent Sensor Box’ (Paletta et al., 2023). Furthermore, it referred
to the Resilience Risk Stratification Model (RRSM) that provides real-time
data for a resilience monitor (Paletta et al., 2024).

In the presented research protocol, we anticipate the computerized
estimation of workers’ recovery-stress states at a manufacturing site using
wearable biosignal sensors and validated psychological assessments. In the
methodological part we argue that the RRSM model may be extended with
the analysis of mechanisms of ‘bouncing back’ effects that are measured by
using the psychological construct of the ‘recovery-stress’ state into a novel
model type, i.e., RRSM-BB. The recovery-stress state will be configured by
mapping biosignal data to psychological constructs, such as, the RESTQ-
Work (Recovery-Stress Questionnaire, Kellmann & Kallus, 2024; Jiménez
& Kallus, 2016) to draw a picture of the current ‘biopsychosocial’ state
of the worker. The RESTQ measures the frequency of current stress
symptoms along with the frequency of recovery-associated activities to offer
a differential picture of the current recovery-stress state.

The long-term vision is to equip shop floor workers with activity trackers
that collect physiological data at a manufacturing site which will enable
continuous monitor the workers’ stress and resilience scores. A central
platform will capture pseudonymized data to analyze trends, flagging stress
episodes, insufficient recovery periods, or signs of resilience, and inform the
worker about its psychophysiological state. Data privacy and compliance
with workplace regulations should always be ensured, fostering trust and
sustainable usage. This implementation aims to enhance workers’ well-being
and optimize productivity.

RELATED WORK

Work-related stress usually occurs when the demand exceeds the worker’s
capacity to perform (Wegner, 1988). Exposure to stress has been shown to be
related to adverse effects in the way people feel, think, and behave (Griffiths,
1995), and generally, it is demonstrated to have psychological consequences
on workers, such as, states of anxiety and frustration (Brunzini et al., 2021).
At the physiological level, it can alter vital processes, such as heart and
breathing activity, whereas from the physical point of view, it affects natural
posture and body activity (Brunzini et al., 2021).
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Industry 5.0, as a new human-centered perspective, puts human workers at
the center of production processes and ensures that technology adapts to their
requirements (Yeow et al., 2014). However, stress has further consequences
on production activity due to the positive correlation with errors and periods
of distraction at work, reducing the quality and performance of the worker
(Zizic et al., 2022) and leading to new costs and losses for companies.

In modern manufacturing environments, where time pressure, shift work,
physical demands, and high mental workloads converge, the continuous
monitoring of employees’ psychophysiological state is becoming increasingly
relevant. Wearables—portable sensors—open up new possibilities for
measuring stress, recovery, and resilience in real time and in natural work
settings.

Models such as the transactional stress model by Lazarus and Folkman
(1984) emphasize the importance of subjective appraisal: whether a situation
is perceived as stressful depends on how challenging it is and whether the
individual believes they have adequate resources to cope with it. The concept
of allostasis describes how the body responds to ongoing stress by trying
to maintain balance—though chronic strain can lead to long-term health
damage (McEwen & Stellar, 1993).

The most important biosignals used to measure stress include HR and
HRV, electrodermal activity (EDA), skin temperature, and movement data
(via accelerometers). In stressful situations, HRV typically decreases as the
parasympathetic system is suppressed. Change in skin conductance also
indicates arousal levels and is governed by sympathetic activation. These
signals can be captured using commercially available devices such as the
Empatica E4 or even smartwatches (e.g., Garmin, Apple Watch).

Blandino (2023) provides a review on the measurement technologies on
stress in smart and intelligent manufacturing systems. This review identifies
and summarizes a growing body of literature that recognizes the importance
of human-centered manufacturing systems (Wang et al., 2020; Nguyen et al.,
2022) and related human-centered parameters, especially workload, physical
and mental fatigue (Villani et al., 2019), ergonomics (e.g., Stefana et al.,
2022) and related indicators (Argyle et al., 2021; Digiesi et al., 2020).
From the psychological perspective, studies review traditional standard
questionnaires in order to adapt them to new manufacturing contexts. For
example, Lesage et al. (2012) focused on the properties of the Perceived Stress
Scale. On the physiological perspective, the literature includes significant
studies (Leone et al., 2020) proposing a multi-sensor platform to monitor
stress in manufacturing contexts. Han et al. (2017) designed a wearable
device for the detection of work-related stress; Setz et al. (2009) described
a wearable device for discriminating the phenomenon of stress from the
cognitive load. On the other hand, Khamaisi et al. (2022) proposed strategies
for identifying potential causes of stress for workers, which may be induced
by collaboration with robots, as explored by Arai et al. (2010). deVries et al.
(2019) presented a framework for the integration of stress and resilience of
employees that was initially based on questionnaires, ecological momentary
assessment (EMA) as well as wearable monitoring. In this wider context,
Dunghana et al. (2021) presented a concept for flexible production planning
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that incorporates human workers and investigates different scenarios of task
allocation between humans and machines and their impact on production
workflows.

Recovery is equally crucial for sustainable performance. Wearables can
track HRV overnight, providing insight into the quality of physiological
recovery. Movement patterns can also be analyzed to determine whether
employees are taking enough breaks or are too sedentary during their shifts.
Particularly interesting is the combination of objective data with subjective
experiences: through brief app prompts (Ecological Momentary Assessment),
employees can report how recovered they feel. Together, these sources yield
valuable insights into regeneration (Kallus & Kellmann, 2001; 2016).

Resilience—the ability to cope with stress and bounce back from
setbacks—is usually assessed in research through questionnaires such as
the Connor-Davidson Resilience Scale (CD-RISC; (Connor & Davidson,
2003) or the Brief Resilience Scale (BRS; Chmitorz et al., 2018). However,
wearables offer new avenues to assess the more dynamic, situation-dependent
form—state resilience. For example, one can model how quickly a person
physiologically recovers after a stress spike. A commonmethod is exponential
modeling of HRV or EDA after the end of a stressor. A rapid return to baseline
is interpreted as a sign of high resilience. Over longer periods, patterns
can also be identified that suggest a more resilient lifestyle: stable sleep-
wake rhythms, low reactivity to everyday stressors, or a balanced alternation
between tension and relaxation. While these measurements do not replace
classic resilience diagnostics, they can serve as digital biomarkers of healthy
psychophysiological functioning (Lee et al., 2024).

One of the rare research works on wearable sensing of stress and resilience
was provided by Adler et al. (2021) in which a system was created to find
indicators of resilience using passive wearable sensors (Fitbit armband) and
smartphone-delivered ecological monitoring app (EMA). This system that
was specialized on the workplace of care professionals (resident physicians)
identified resilience indicators associated with physical activity (step count),
sleeping behavior, reduced heart rate, increased mood, and reduced mood
variability.

RESILIENCE AND RECOVERY-STRESS COMPUTING

The research methodology of this work is to associate biosignal-based
features with psychological test scores as a first step to provide better
orientation for future research and innovation on adaptive human-centered
technologies. Firstly, the extraction of informative digital features from the
wearable biosignal sensor data is described. Secondly, we identify test scores
from questionnaires that will capture the most important psychological
constructs describing the stress and resilience status of the workers in the
manufacturing environment.

Resilience Risk Stratification Model

The conceptual framework of the RRSM is presented in Figure 1. It illustrates
our hypotheses on how the accumulation of the negative consequences of
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stress has a cyclical nature and how it can contribute to a loss spiral.
This framework is based on the Transactional Model of Stress and Coping
(Lazarus & Folkman, 1987), the Job Demands-Resources Model of Burnout
(Bakker & Demerouti, 2007), the Effort-Recovery Model (van Veldhoven,
2008), the Conservation of Resources Theory (Hobfoll, 2001), and the
WearMe project (deVries et al., 2019).

Psychophysiological strain accumulates when (job) demands, such as time
pressure or physical workload are appraised as a threat due to inefficient
available resources to adaptively cope with them (Lazarus & Folkman,
1987). In the RRSM model, we estimate the Physiological Strain Index (PSI)
according to Moran et al. (1998) by

PSIt = 5 Tcore,t−Tcore,min
Tcore,max−Tcore,min

+ 5 HRt−HRmin
HRmax−HRmin

,

as well as the Cognitive-Emotional Strain Score (CES, Haid et al., 2024):
the worker’s workload is estimated using a heuristically defined measure, as
follows,

CESscore,t = η
{
1− HRVt−HRVmin

HRVmax−HRVmin

}
+

Tskin,t−Tskin,min
Tskin,max−Tskin,min

+
HRt−HRmin

HRmax−HRmin
,

with a pre-defined heuristically selected η=8 according to previous
experience. Based on the threat of fundamental strain, an individual’s need
for recovery, characterized by feelings of exhaustion and reduced vigor
to undertake new activities, depends on the individual’s ability to utilize
the available resources to adaptively cope with the demands (Lazarus &
Folkman, 1987; Bakker & Demerouti, 2007). A high need for recovery (i.e.,
little vigor to undertake activities) has a negative impact on an individual’s
resources to appraise and cope with new demands, such as, a demanding
work that should be allocated to workers. However, recovery may counteract
and alleviate this effect (van Veldhoven, 2008).

Figure 1: Modelling wearable-based measurements and resilience scores into the
worker’s resilience risk stratification model (Paletta et al., 2024).
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In the RRSM model, we modelled a measure of mental exhaustion in
terms of the daily total strain score as a function of the strain data from
wearable sensors (Figure 1). The accumulating effect of mental exhaustion
integrates daily score contributions within a predefined extent of recency. The
resilience score underlying the risk stratification is then further outlined by an
inverse function of the mental exhaustion. This score implicitly represents a
tendency of the long-term stress dynamics rather than a short-term response-
based construct. In this context, the framework includes a cyclical nature
that is supported by the Conservation of Resources theory (Hobfoll, 2001),
which states that long-term loss of resources increases one’s vulnerability
to stress, and, since additional resources are necessary to battle stress, this
may lead to a depletion of resources in a loss spiral. The motivation of the
development of this RRSM framework is to prevent this loss spiral for the
benefit of the worker as well as the economic impact of the manufacturing
company. However, in the present work we specifically add the modelling of
the ‘bouncing back’ effect in recovery (Smith et al., 2008) that refers to the
state-like ability of resilience to recover from stressor-driven stimuli.

Physiology-Based Quantification of Recovery

Quantitatively measuring the quality of recovery from a stressor using heart
rate (HR) and heart rate variability (HRV) data is a well-established goal
in psychophysiological research (Kim et al., 2018). One useful conceptual
framework is the ‘bouncing back’ effect, which describes how quickly and
effectively the autonomic nervous system returns to baseline (homeostasis)
after a stressor (Thayer et al., 2012).

Resting heart rate (RHR) is an accessible metric from wearables that
correlates with stress and fatigue. Under restful, recovered conditions, RHR
tends to be lower, while stress and insufficient recovery drive it higher. Field
data indicate that on days with elevated stress, individuals often show an
increase in RHR (even a modest +1–2 bpm above baseline; Adler et al.,
2021); an upward drift in daily minimum heart rate may reflect accumulating
strain or poor recovery.

The recovery of heart rate (HR Recovery; HRR; Mongin et al., 2021) is
simple and widely used, measuring how quickly HR decreases after peak
stress,

HRR1 = HRpeak −HRt

HRV typically decreases during stress (sympathetic dominance) and
increases during recovery (parasympathetic rebound). The metrics under
investigation are, RMSSD (Root Mean Square of Successive Differences),
SDNN (Standard Deviation of the normal-to-normal intervals) as well as HF
and LF power (High-Frequency and Low-Frequency component). During a
short-term monitoring period, daily HRV trends are used to gauge recovery –
for example, persistent HRV suppression from one day to the next may
signal insufficient recovery (Shaffer & Ginsberg, 2017). Tracking HRV can
principally reveal how consistently a worker’s autonomic state rebounds after
work stress.
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Exponential models provide a quantitative framework for assessing
autonomic recovery post-stress and thereby quantifying the ‘bouncing back’
(‘Exponential Recovery Model’; Joseph et al., 2023) by

Xt = X0 +
(
Xpeak −X0

)
e−kt,

where X refers to HR or HRV, X0 to the baseline, and k refers to a recovery
rate constant. The specific term ‘Area to Recovery’ (ATR) is not widely
established in the literature. However, the concept relates to the integral of
the heart rate recovery curve, representing the total deviation from baseline
over time

ATR =
∫ trecovery

t0
|Xt−X0|dt

and ‘Time to Recovery’ (TTR), the time it takes to return within a threshold
(e.g., 5%) of baseline HR or HRV,

TTR = min {t| |Xt −X0| < ε ·X0} t

The study by Joseph et al. (2023) investigated the modeling of heart
rate recovery (HRR) using single and double-exponential decay models. The
authors found that the double-exponential model, which accounts for both
sympathetic withdrawal and parasympathetic reactivation, provided a better
fit for HRR data in a majority of participants. This approach quantifies the
‘bouncing back’ effect of the autonomic nervous system post-exercise.

Tracking movement and activity context via wearables is essential for
accurate stress detection, particularly in dynamic settings like manufacturing.
Physiological indicators such as elevated HR or reduced HRV can result from
both psychological stress and physical exertion. Without contextual data on
physical activity, distinguishing between these causes becomes challenging,
potentially leading to misinterpretation of stress levels. Incorporating activity
context has been shown to enhance the performance of stress detection
models, improving accuracy and reducing false positives (Sun et al., 2012).
For instance, context-aware models that integrate activity data outperform
those relying solely on physiological signals. This integration allows for
a more nuanced understanding of stress responses, enabling timely and
appropriate interventions.

Quantification of Psychological Resilience

Various psychometric questionnaires quantify psychological resilience and
related constructs; some measure resilience as a personal trait or capacity,
while others assess perceived stress, workload, or psychosocial work
factors that impact resilience. RS-13 (Leppert et al., 2008) evaluates
resilience as a positive personality characteristic (adaptability), including
two facets – personal competence and acceptance of self/life – without a
specific timeframe. Its brevity makes it practical for use with manufacturing
workers, providing a quick gauge of an individual’s resilience level. CD-RISC
is a widely used self-report scale of personal resilience. Psychometrically, it
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exhibits strong reliability and validity across cultures, and it can capture
workers’ general resilience, such as their tenacity and adaptability in face of
production pressures. The Brief Resilience Scale (BRS; Smith et al., 2008)
defines resilience as the ability to bounce back or recover from stress.
Unlike CD-RISC and RS-13 which emphasize protective characteristics, the
BRS focuses on outcome, directly assessing how quickly one recovers from
workplace stressors. The Perceived Stress Scale (PSS; Cohen et al., 1983)
measures the extent to which life situations are appraised as stressful. The PSS
is not a resilience scale per se but a complementary outcome measure: higher
perceived stress often correlates with lower resilience. The Recovery–Stress
Questionnaire for Work (RESTQ-Work; Jiménez & Kallus, 2016) assesses
the balance between work-related stress and recovery. Respondents rate how
frequently they experienced various stressors (e.g. fatigue, overload) versus
restorative activities or states (e.g. adequate rest, off-job relaxation). The
RESTQ-Work helps identify if workers are adequately recuperating or at
risk of chronic stress and burnout. The NASA Task Load Index (NASA-
TLX; Hart & Staveland, 1988) is a subjective, multidimensional tool rating
perceived mental and physical workload of specific tasks that could challenge
employees’ resilience or lead to fatigue, making it a valuable instrument for
quantifying task-level stressors in manufacturing environments.

The Copenhagen Psychosocial Questionnaire (COPSOQ; Kristensen
et al., 2005) is a comprehensive questionnaire assessing a broad range
of psychosocial work environment factors, including job demands, work
organization, interpersonal relations, and worker health and well-being,
pinpointing psychosocial risk factors that may undermine worker resilience,
complementing individual-focused resilience and stress measures.

Integrated Estimation of Psychological Risk Levels

To estimate psychological risk levels from wearable biosignal sensor data
in a manufacturing environment, a structured machine learning (ML)
approach can be employed. This involves collecting daily physiological
and activity data over period of several weeks and correlating it with
psychological assessments. Participants wear devices that record HR, HRV,
and activity levels. From this data, features such as resting heart rate,
HR recovery (the rate at which HR returns to baseline post-activity),
daily HR and HRV minima and maxima, and sleep quality metrics are
extracted. Advanced models like the Exponential Recovery Model can
quantify the rate of autonomic recovery, while metrics like ATR and
TTR provide insights into the duration and extent of physiological stress
responses. Concurrently, participants complete validated questionnaires
assessing constructs like workload (NASA-TLX), resilience (BRS, RS-13),
psychosocial factors (COPSOQ), recovery-stress balance (RESTQ-Work),
and perceived stress (PSS).

The extracted physiological features serve as inputs to ML models aiming
to predict psychological risk levels that will be integrated in the future RRSM-
BB model. Once validated, these models can estimate psychological risk
levels in real-time, enabling early interventions. For instance, if a worker’s
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physiological data indicates elevated stress levels, proactive measures can be
taken to mitigate potential adverse outcomes.

STUDY PLAN

The exploratory study may take place at a manufacturer’s site with n = 20
workers (10 female, 10 male) being included for a time period about 2–4
weeks and engaged in a day shift of 8 hours work on the shop floor.

Firstly, there will be a kickoff workshop at the manufacturing site where
workers can fill out questionnaires – demographics, RS-13, BRS, PSS-
10, RESTQ-Work, COPSOQ, and NASA-TLX - and familiarize with the
equipment and questionnaires to be filled alone using the app of LimeSurvey
GmbH (2025). Furthermore, there will be a session to determine the baseline
values. Within the subsequent two weeks, participants will wear activity
trackers by day and night and be asked to fill a short version of the NASA-
TLX daily before shift, before lunch, and before the end of shift. At each
weekend, they will be asked to fill out further questionnaires (BRS, PSS-
10, and RESTQ-Work). Participants will be reminded of filling out the
questionnaire using automated electronic messaging (SMS). At the end of
the study, participants will fill out the remaining questionnaires (RS-13, BRS,
PSS-10, RESTQ-Work, and NASA-TLX).

CONCLUSION AND FUTURE WORK

This work presents a novel research protocol integrating wearable
biosignal sensor data with psychological assessment to estimate recovery-
stress states in manufacturing environments. By combining physiological
indicators with validated questionnaires, the framework enables continuous,
individualized monitoring of resilience. The proposed extended Resilience
Risk Stratification Model RRSM-BB supports early identification of stress-
related risks, promoting timely interventions. Future work will apply the
exploratory study at a manufacturing site, perform the analytics on real data.

Furthermore, we may refine the model using multisensory data, such as
smart textiles and eye tracking, and explore adaptive feedback systems that
respond dynamically to workers’ psychophysiological states, contributing to
healthier, human-centered production environments. Longitudinal validation
across diverse industrial settings is planned.
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