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ABSTRACT

The cognitive load of astronauts has a large impact on the efficiency of human-
machine co-operation, and the reasonable adjustment of astronauts’ cognitive load
is crucial to guarantee the success of the mission. However, the current cognitive load
prediction and assessment methods have the problems of detaching the evoked task
(N-back) from the main task and the high latency of subjective load assessment, which
affect the accuracy of the prediction and assessment of cognitive load. Therefore,
the study proposes a subjective-objective synchronised cognitive load experimental
assessment method for typical tasks on the lunar surface, where a dynamic N-back
experimental paradigm is designed according to the operation process to induce
different levels of cognitive loads for the astronauts, and at the same time, the
astronauts are required to complete corresponding NASA-TLX scale pop-ups for real-
time subjective load assessment in different operation processes. In the objective
assessment, the multimodal signals of the astronauts were collected based on GSR,
ECG and PPG for feature extraction. Finally, this study constructs a comprehensive
assessment model of human-machine collaborative effectiveness for lunar surface
operations based on behavioural performance and cognitive load state and verifies
its validity through typical experimental tasks. The experimental assessment method
can comprehensively consider the human-machine cooperative ability of astronauts
under the influence of multiple factors in the lunar surface special-cause environment,
construct the N-back experimental paradigm of the evoked task and the typical task
organically combined experiments, and at the same time reduce the latency of the
subjective evaluation, realise the synchronous assessment based on subjective and
objective physiological and task data, and effectively enhance the accuracy of the
prediction and assessment of the cognitive load.
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INTRODUCTION

The strong radiation (Benaroya, 2017), microgravity (Schuerger et al., 2019;
Zhou et al., 2019) and unstructured special environment (Jablonski and
Man, 2021; Liu and Huang, 2024) on the lunar surface will have an impact
on the physiology and psychology of astronauts, and the characteristics
of their human capabilities (Blakely et al, 2016), such as operating
force, cognition and perception, will change, and their human-machine
manoeuvring capabilities will be constrained.

During lunar exploration missions, astronauts must process large amounts
of information and make rapid decisions (Rai et al., 2011), which inevitably
puts a strain on their cognitive systems. Cognitive load theory states that
an individual’s ability to process information is limited (Young et al., 2014).
In lunar operations, if the cognitive load of astronauts is too low, it may
lead to insufficient perception of the environment and situational awareness,
thus affecting the execution of the mission; while too high a cognitive load
may trigger physiological and psychological fatigue, reducing operational
efficiency and safety. Therefore, rationally adjusting the cognitive load of
astronauts is essential to ensure mission success.

Considering the coupling of multiple factors and the superposition of
multiple effects in the lunar operating environment, we must adopt a
systematic approach to assess and respond to these complexities, and the
continuous optimization of the human-computer collaborative operating
model ensures that the astronauts are able to work in an environment that
is both efficient and safe (Jorgensen, 2010; Pothier et al., 2019). With
the continuous development of space exploration technology, this human-
centered design thinking will provide more solid theoretical and practical
support for lunar surface exploration and drive the cause of space exploration
forward (Laraway et al., 2024).

Evaluation Modelling of Human-Machine Collaboration Efficacy

Reasonable human-machine (lunar rover, robotic arm, etc.) collaborative
design can maximize the human role and improve task performance
(Mueller, 2006; Xue et al., 2023). For the study of human-machine synergy
effectiveness model (Kokotinis et al., 2023; Parasuraman and Riley, 1997),
it is often constructed from multiple indicators such as task performance,
behavioural performance, and human state (Fu ez al., 2023). The effectiveness
is a combination of task performance and process influences, which not only
includes the assessment of astronauts’ task performance but also covers the
assessment of human state and behavioural performance, and a reasonable
human-machine collaborative system design can effectively ensure the safety
of astronauts and the successful completion of the lunar surface exploration
mission.

Therefore, in this study, various data of the subject astronauts were
counted to construct an efficacy model of human-machine collaboration,
and the indexes of the model mainly include behavioural performance and
human cognitive load indexes. In the behavioural performance indexes,
the astronauts’ behavioural performance and responsiveness in tasks were
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assessed by the reaction time and correctness rate of completing the
N-back task. In the cognitive load indexes, the astronauts’ physiological
and psychological states were evaluated to ensure that they are able to
perform the mission in an optimal state. Objective data were assessed by
fusing multimodal physiological signals for cognitive load assessment, and
subjective data were calculated by embedded NASA-TLX scale scores. After
collecting the data, the accuracy and stability of the model were evaluated
to verify the influence of each factor on the cognitive load of astronauts and
explore the mechanism of its influence. At the same time, we compare the
dynamic data of astronauts’ indicators under the influence of different task
difficulties, analyse the correlation of changes among the indicators, and test
the reasonableness of the model construction.

Cognitive Load Assessment

Cognitive load (Paas et al., 2003; Schnotz and Kirschner, 2007) is the
proportion of information processing capacity or cognitive resources that
meets actual needs, where cognitive resources mainly refer to attentional
resources and working memory capacity involved in cognitive processes.

In cognitive load assessment experiments, different levels of cognitive
load are usually induced and measured by the N-back paradigm (Ni and
Ma, 2024; Owen et al., 2005), and the common measurement methods
include subjective scale assessment, physiological signal measurement and
task performance assessment, and they are usually assessed in a combination
of subjective and objective methods. Objective cognitive load is mainly
measured by physiological signals, including Electrocardiogram (ECG),
Photoplethysmogram (PPG), Galvanic Skin Response (GSR), which has the
advantages of sensitivity and objectivity. ECG is a gold-standard method
for measuring heart rate, which is influenced by cognitive load. Increased
cognitive load typically results in elevated heart rates (Alshanskaia ez al.,
2024). Studies have shown that heart rate increases with task difficulty
(He et al., 2022; Hettiarachchi ez al., 2018), indicating higher cognitive
load. For instance, during a cognitive task, heart rate measured via ECG
was found to correlate with anxiety and depression levels. PPG measures
blood volume changes and can track cognitive load through pulse wave
amplitude (Gupta et al., 2024; Xuan et al., 2020). PPG morphometrics, such
as changes in waveform shape, are indicative of cognitive load and can be
used to differentiate between low and high mental workload (Pavlov et al.,
2023). GSR measures skin conductance, which increases with cognitive load
due to heightened sympathetic nervous system activity (Feradov et al., 2020;
Saha et al., 2022). GSR data has been shown to correlate with task difficulty
and cognitive load (Hirachan et al., 2022), providing a reliable measure of
mental effort.

Measurement of subjective load is commonly performed by means of
a scale, the NASA-TLX Scale (Hart and Staveland, 1988) is a subjective
load assessment tool developed by NASA Ames Research Center that
measures operator load while performing a task through six dimensions
(psychological demands, physical demands, time demands, performance,
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effort, and frustration). The scale uses a weighted average to produce an
overall workload score and is widely used in aerospace, command and
control, and other fields.

Experimental Paradigm Improvement Design

The current experimental design of cognitive load assessment has the
following major problems. Firstly, the current N-back experimental paradigm
(Pergher et al., 2018) often induces different levels of cognitive load
through independent visual or auditory stimuli, which is often detached
from the content of the main task that the subject is currently performing,
affecting the subject’s immersive experience in the simulated environment.
Secondly, the subjective load scale is often used some time after the end of
the experiment to make the subject recall the experimental process results
to answer, resulting in high assessment latency, which seriously affects the
accuracy of cognitive load assessment.

Therefore, the study proposes a subjective and objective synchronized
cognitive load experimental assessment method for the lunar soil acquisition
mission, where a dynamic N-back experiment paradigm is designed based
on the operation process to induce different levels of cognitive loads for
astronauts, and at the same time, astronauts are required to complete the
corresponding modular NASA-TLX scale pop-ups for real-time subjective
load assessment in different operation processes. In the objective assessment,
the GSR, ECG and PPG of the astronauts were collected for feature extraction
based on the multi-probe physiological module.

To collect physiological data from subjects under different cognitive loads,
a within-group experimental design was used, with the within-group factor
being the difficulty of the task, which was categorized into three levels of
difficulty: low, medium, and high. The experiment was conducted as a
simultaneous primary and secondary task, with the primary task being moon
soil collection, which required the shovel to be manipulated by keystrokes to
collect 150g of moon soil six times. The collected components were set to
be volcanic glass beads, the average diameter is generally less than 0.1mm,
which is important for the study of early lunar magma, and the colors of
volcanic glass beads of different compositions are significantly different, as
shown in the Table 1.

Table 1: Volcanic glass moon soil color classification and characteristics.

Color Feature

Green TiO content is the lowest (generally less than 1%),
Orange TiO; content up to 9%~12%

Yellow Slightly higher TiO; content (3%~7%)

Black Highest TiO, content, above 14%

Based on the specificity of the color of moon soil collection, the subtask
was designed as an improved N-back task, which required subjects to
remember the number of times and the color of the current collection after
each collection of moon soil samples, and to pop up a pop-up window during
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the subsequent collection asking whether the color of the current collection
was the same as the color of the specific number of times, in order to
determine the behavioral performance of the subjects during the experiment.

Study Goal

The research was based on the virtual reality simulation of the lunar
surface training environment and synthesizes multi-physiological signals to
realize the subjective and objective simultaneous assessment of astronauts’
cognitive load. This method can comprehensively consider the human-
machine synergistic ability of astronauts under the influence of multi-
factors in the lunar surface special cause environment, construct the N-back
experimental paradigm of the evoked task with the typical task organically
combined with the experiments, and at the same time reduce the latency
of the subjective evaluation, realize the synchronous evaluation based on
the subjective and objective physiological and task data, which effectively
improves the accuracy of the prediction and evaluation of the cognitive
load, and lastly, combined with the study of the astronauts’ human-machine
synergistic efficacy in lunar exploration, we can evaluate the impact of
cognitive load in the mission. Finally, we analyse the elements affecting
the human-machine synergistic performance in the light of the research
on the human-machine synergistic performance of astronaut lunar surface
exploration.

METHOD
Participants

In order to validate the usability of this experimental system while collecting
physiological datasets under different loads, a total of 10 participants
(Virzi, 1992) were recruited for the experiment. The average age among
the participants was 22.5 (SD = 0.92). The experiments were conducted at
the Beijing Institute of Technology and were reviewed by the Ethical Review
Board of BIT.

Material and Procedure

Based on a self-developed virtual reality (VR) lunar surface environment,
this study simulates the operational task of lunar soil collection, and
employs physiological multi-parameter modules (oxygen clamps, electrocar-
diographic electrodes, and electrocorticographic electrodes) to assess the
cognitive load of astronauts. The experiment induced different levels of
cognitive load in astronauts through a dynamic N-back task, incorporating
a pop-up real-time NASA-TLX scale.

The dynamic graphic N-back task is designed as follows: the subject needs
to collect moon soil six times in total, and after shovelling out the moon soil,
the colour of some of the volcanic glass bead samples can be seen. 1-back
task, the subject needs to press the handle button as fast as possible when
he/she sees that the colour of the shovelled moon soil is the same as that of
the last collection. 2-back task, the subject needs to press the handle button
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as fast as possible when he/she sees that the colour of the shovelled moon
soil is the same as that of the second collection (two times in between). In
the 2-back task, subjects had to press the handle button as fast as they could
when they saw that the lunar soil they were shovelling was the same colour
as that of the second previous collection (one interval). 3-back task, subjects
had to press the handle button as fast as they could when they saw that
the lunar soil they were shovelling was the same colour as that of the third
previous collection (two intervals). The software platform recorded the time
from when the digging sample saw the colour to when the key was pressed
as the response time each time. The result of each response was also recorded
and used to count the percentage of correctness. If the subject did not respond
for more than five seconds, it was recorded as one failure.

After the n-back question in times 4-6, we included a NASA-TLX scale
pop-up to embed the scale during the task to enhance timeliness, as shown
below.
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Figure 1: Procedure and environment of the experiment.

Data Processing and Analysis

For objective physiological data, we used the open-source Neurokit2 python
library to preprocess and feature extract the signals during the N-back task.
The sampling rates for ECG, GSR, and PPG were set at 1000 Hz, 100 Hz, and
80 Hz, to ensure high-resolution capture of physiological signals for detailed
analysis. To capture the dynamic changes in astronauts’ cognitive load in real
time, a sliding time window of 30 seconds was employed to segment the data
(Xia et al., 2020).

The original data is first filtered to reduce noise. A 0.5 Hz high-pass
Butterworth filter is applied to the ECG signal, followed by the removal
of power line interference. A band-pass Butterworth filter with cutoff
frequencies of 0.5 Hz and 3 Hz is used to filter the respiration signal. We
extracted heart rate (HR) by identifying R-peaks in the ECG signal and
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calculating the number of R-peaks per minute. For heart rate variability
(HRV) analysis, we computed the standard deviation of the RR intervals
(SDNN) and the root mean square of successive differences (RMSSD) to
quantify the variability in heart rate (Laraway et al., 2024).

For the GSR data, a second-order Butterworth filter with a cutoff
frequency of 0.3 Hz was employed to effectively remove high-frequency noise
and smooth the signal. Given that the useful frequency band of GSR signals
primarily lies below 0.2 Hz, this filter design ensures maximum flatness in
the passband and a gradual attenuation in the stopband, thereby effectively
eliminating out-of-band noise. For segments of the signal that are entirely
submerged in noise, these valueless data points were discarded to ensure
the quality and reliability of the processed GSR data. Skin Conductance
Level (SCL) was extracted by calculating the average value of the tonic
component of the filtered GSR signal within each time window, reflecting
the baseline level of skin conductance. The amplitude and the height of Skin
Conductance Responses (SCR) was determined by identifying the peaks in
the phasic component of the filtered GSR signal, with the SCR representing
the magnitude of the phasic responses.

During the processing of PPG data, a third-order Butterworth filter with a
passband frequency range of 0.5 to 8 Hz was utilized to eliminate noise and
interference (Alshanskaia et al., 2024). The purification and peak detection
of PPG signals were accomplished by leveraging the integrated functions
of NeuroKit2 and the moving average method was employed to identify
potential systolic peaks. We measured the PPG amplitude by identifying the
peak values of the pulse waves, which reflect the intensity of blood flow and
vascular tone.

In the calculation of the scores of the NASA-TLX scale, the weight
values of the dimensions were obtained by two-by-two comparisons, and the
product of everyone’s score and weight was used as the subjective cognitive
load score.

RESULTS

The distribution of physiological features across different n-back task levels
is illustrated in Figure 2. A one-way analysis of variance (ANOVA) revealed
that SCL increased significantly with higher task difficulty (p < 0.01).
Specifically, both 3-Back and 2-Back exhibited significantly higher SCL
values compared to 1-Back (p < 0.01), though no significant difference
was observed between 3-Back and 2-Back.Conversely, PPG Amplitude and
HRYV decreased progressively with increasing task demands. PPG Amplitude
declined from 1-Back to 3-Back, showing a significant negative correlation
with task difficulty (p < 0.01). Similarly, HRV decreased from 1-Back to
3-Back (p < 0.01) and 2-Back to 3-Back (p < 0.05), indicating reduced
parasympathetic modulation under high cognitive load. These results suggest
that this experimental design is effective in inducing three levels of cognitive
load, high, medium and low, and that an increase in cognitive load induces
an increase in sympathetic neural activity and a decrease in cardiovascular
adaptations



128 Weiquan et al.

i

plitude

n
o

PPG_Am|
HRV_SDNN

1-Back 2-Back 3-Back 1-Back 2-Back 3-Back 1-Back 2-Back 3-Back

Figure 2: Feature extraction results.

In the assessment of subjective workload and behavioural performance,
the NASA-TLX value and accuracy rate of the N-back for all participants
across different groups and response times are illustrated in Figure 3. A one-
way ANOVA revealed that the subjective workload increased significantly
with the increasing number of n in the n-back task (p < 0.01). The
average scores across the three groups were as follows: 3-Back (M = 14.41,
SD = 0.72) > 2-Back (M = 12.88, SD = 0.61) > 1-Back (M = 8.52,
SD = 0.43). Additionally, the subjective workload scores of participants
increased significantly over time as the task progressed (p < 0.01).

Using the accuracy rate of the N-back as a reference for the behavioural
performance of participants in the lunar surface simulation task, it was
observed that the task performance of participants decreased over time,
with the most significant decline observed in the 2-back and 3-back groups.
The average accuracy rates across the three groups were: 1-back (86.67%)
> 2-back (66.67%) > 3-Back (50%).
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Figure 3: NASA-TLX value and N-back correct rate.

DISCUSSION

The findings of this study demonstrate a clear decline in behavioural
performance, as measured by the accuracy of the N-back task, with increasing
cognitive load. This trend is consistent across all three experimental groups.
Specifically, as task difficulty increased from 1-back to 3-back levels, a
significant reduction in accuracy was observed. This decline in performance
corroborates with subjective cognitive load data derived from NASA-TLX
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scores and objective physiological measurements obtained from ECG, GSR,
and PPG signals. These results reinforce the hypothesis that higher task
demands adversely affect working memory and attentional resources, leading
to degraded task performance.

A noteworthy contribution of this study is the robust synchronization
observed between subjective cognitive load assessments and objective
physiological data. The real-time NASA-TLX pop-up scales provided
a timely capture of subjective load perceptions, effectively minimizing
latency-related inaccuracies typically associated with retrospective reporting.
Simultaneously, the multimodal physiological signals offered granular
insights into the astronauts’ cognitive states, with features such as heart
rate variability (HRV) from ECG, skin conductance levels (SCL) from
GSR, and pulse amplitude variability from PPG showing high sensitivity
to task difficulty. The alignment of these subjective and objective metrics
underscores the reliability and validity of the proposed synchronized
assessment framework.

An important observation is the temporal degradation of behavioural
performance over the duration of the tasks. This decline was accompanied
by a progressive increase in both subjective and objective cognitive load
indicators. The temporal analysis revealed that participants exhibited
reduced accuracy and prolonged reaction times in later stages of the task
sequence, reflecting cumulative cognitive fatigue. Physiological measures
such as elevated heart rates and increased skin conductance levels further
validated the temporal escalation in cognitive load. These findings highlight
the dynamic nature of cognitive load, emphasizing the need for adaptive
workload management strategies during prolonged operations in high-stakes
environments like lunar exploration.

CONCLUSION AND FUTURE WORK

This study verifies the validity of the subjective-objective synchronization
assessment method and the human-computer cooperative effectiveness
model through usability experiments. This human-computer cooperative
technology experimental method can be widely applied to human-computer
interaction environments in complex systems such as human spaceflight and
autonomous driving. In further research, the number of subjects will be
increased to obtain more reliable data sets, and the cognitive load will be
predicted by machine learning classification algorithms. At the same time,
the model parameters will be adjusted to improve the accuracy of the system,
and the generalization ability of the subjective and objective assessment
model of cognitive load will be improved so that it can be adapted to
different individual astronauts and different deep space exploration mission
requirements. In addition, exploring more covert physiological measurement
techniques and reducing the impact of acquisition equipment on astronaut
operations are also our further research goals.
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