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ABSTRACT

Team environments increasingly integrate autonomous technologies to reduce
workload and enhance performance. However, traditional metrics may overlook
indirect benefits, particularly cognitive efficiency—the balance between workload
and performance. This study examined how autonomous decision support systems
(ADSS) affected cognitive efficiency and team communication in a high-fidelity
simulated combat environment. Twenty-eight military personnel completed ten
missions, alternating between conditions with and without ADSS that provided task-
switching cues and flexible task allocation. Results showed that missions using
ADSS produced higher cognitive efficiency, indicating improved performance relative
to workload, though benefits varied by role and team. Teams also demonstrated
enhanced communication patterns with ADSS, using more insight-related language,
and maintaining a more positive tone. These findings highlight cognitive efficiency
as a valuable metric for evaluating autonomy in complex environments and reveal
how autonomous systems can enhance team effectiveness through improved team
processes.

Keywords: Human-autonomy teams, Team workload, Cognitive load, Cognitive efficiency, Team
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INTRODUCTION

The integration of autonomous technologies into complex team
environments is often promoted as a means to improve performance by
way of reducing cognitive workload. This rationale is grounded in capacity
theories of cognition, particularly Limited Capacity Theory (Kahneman,
1973) and Multiple Resource Theory (Wickens, 1984), which posit
that humans possess finite cognitive resources that, when depleted, lead
to performance decrements. The general assumption, therefore, is that
autonomous systems should enhance performance by reducing cognitive
workload, and that increased workload or lack of direct performance
improvements indicates suboptimal implementation. However, this view
oversimplifies the dynamic relationship between workload and performance,
particularly in complex team environments where task demands are
interdependent and distributed between individuals.
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In certain contexts, high workload levels may not only be acceptable,
but necessary, especially when managing complex, interdependent tasks.
The critical factor is not the absolute level of workload, but rather the
relationship between workload and performance outcomes. We argue that a
system that increases cognitive workload is not necessarily suboptimal if that
increased load translates to meaningful performance improvements. Rather,
the concern lies in the scenario in which cognitive demands increase without
corresponding performance benefits. This perspective suggests that effective
system evaluation must move beyond simple workload reduction metrics to
consider the broader workload-performance relationship.

The relationship between workload and performance becomes even
more pronounced in team environments, where changes in individual
workload and performance must be interpreted within the team context.
The performance of individual team members contributes to overall team
outcomes in both explicit and implicit ways. While individual contributions
are often measured through task-specific performance, team-level outcomes
are fundamentally shaped by team processes (Kozlowski & Klein, 2000),
which are the interdependent activities that teams engage in to achieve
a shared goal (Marks et al., 2001), such as communication. This
distinction highlights the potential for autonomous systems to influence team
effectiveness not merely by enhancing individual task performance, but by
impacting team processes. By offloading routine tasks, autonomous systems
can free up cognitive resources that can be reallocated to higher order team
processes such as coordination, decision-making, and problem-solving.

For instance, an autonomous target recognition system may increase a
gunner’s workload without directly improving their accuracy, but aided
recognitionmay free up cognitive resources otherwise allocated to continuous
monitoring, leading to enhanced team effectiveness because the gunner
may subsequently contribute to better situational awareness via improved
communication. In this way, the value of autonomy lies not only in its ability
to enhance individual capabilities but also in its ability to elevate the quality
of team processes, thereby driving superior team outcomes. As such, the
evaluation of systems in team environments requires particular attention to
the ways in which the outputs from individuals combine via team processes
to produce collective outcomes.

The present study examines the relationship between workload and
performance in the context of an autonomous team decision support system
designed to enhance collective performance through improved information
sharing and coordination. To capture the complex interaction between
individual and team outcomes, we evaluated team cognitive efficiency
(Johnston et al., 2013). This was based upon the approach developed by
Fiore Scielzo, Jentsch, and Howard (2006), labeled cognitive efficiency, to
study training effectiveness in the context of workload reductions during
testing. As noted by Fiore and colleagues, this measure is conceptually
similar to instructional efficiency (Paas & Van Merrienboer, 1993), which
used standardized scores of workload and performance and has been used
to generally study cognitive load (Paas & Tuovinen 2004; Paas, Tuovinen,
Tabbers, & Van Gerven, 2003).
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Although research had called for development of workload measures
at a team level (e.g., Funke et al., 2012; Bedwell et al., 2014), the
study on team cognitive efficiency, reported by Johnston et al. (2013),
was one of the first to empirically demonstrate measures of workload in
a collaborative setting. Specifically, this is a metric that quantifies the
trade-off between individual-level workload against team-level performance
outcomes. Team cognitive efficiency was originally developed to evaluate
the effectiveness of static decision support systems (Johnston et al., 2013).
Original findings demonstrated that teams with decision support technology
showed positive efficiency scores (better performance relative to increased
workload), while control teams showed negative scores (increased workload
without increased performance). Building on this foundation, we adopt
team cognitive efficiency to evaluate an autonomous decision support system
(ADSS). Where Johnston et al. examined how static information displays
affected workload-performance trade-offs, we investigate how dynamic task
recommendations and allocation capabilities influenced team effectiveness.

By using team cognitive efficiency, we aim to assess whether the team-level
performance gains realized by using the ADSS outweighed the individual
levels of cognitive workload induced by the system. We hypothesize the
following:

H1: Cognitive Efficiency Scores Will be Higher for Missions That Used
the ADSS as Compared to Those That Did not

Johnston et al. (2013) also found that cognitive efficiency scores varied
by role, with some roles benefiting more from decision support systems
than others. As detailed in the Method section below, each participant was
assigned to a unique role with role-specific responsibilities.We anticipate that
some roles may not benefit as much from the ADSS, particularly those with
fewer opportunities for multitasking or task reallocation. Thus, we propose:

H2: Cognitive Efficiency Scores Will Vary Between Roles

Finally, in line with capacity theories and those emphasizing the importance
of team processes, we hypothesize that improvements in cognitive
efficiency will be accompanied by changes to team processes, particularly
communication. Specifically, we hypothesize that:

H3: Team Communication Processes Will Vary Between Technology
Use Conditions

This study contributes to the growing body of research on autonomy in team
environments by shifting the focus from individual workload reduction to the
broader workload-performance relationship at the team level. By examining
how autonomous systems influence team processes and outcomes, we aim to
provide actionable insights for evaluating and designing systems that enhance
both individual and collective effectiveness.
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METHOD

This work is part of a larger project conducted by the Army Research
Laboratory. We use a subset of data here. All procedures were approved
by the Army Research Laboratory’s Institutional Review Board (IRB), which
served as the primary IRB on record, with a signed authorization agreement
from a collaborating university IRB located in the western United States.
Written informed consent was obtained from all participants.

Participants

Twenty-eight military personnel were recruited from U.S. Army soldiers.
Participation was voluntary and uncompensated. The sample was divided
into two teams of 14 that participated in separate two-week blocks. Each
team followed the same procedure.

Procedure

Each team participated in 10 simulated combat missions, at a rate of two
missions per day over five consecutive days. Their objective was to navigate
a high-fidelity outdoor terrain while engaging and neutralizing enemy forces.
The starting points, endpoints, and configurations of enemy forces varied to
ensure diversity in task demands and challenges.

The teams were divided into two squads of seven members each. Each
squad operated a manned combat vehicle (MCV) and two robotic combat
vehicles (RCVs). Within each squad, roles were randomly assigned and
remained consistent throughout the experiment: three participants served as
drivers, three as gunners, and one as section commander.

Role-specific responsibilities were designed to reflect real-world
operational dynamics. MCV drivers controlled their vehicles using a
steering yoke and pedals, whereas RCV drivers used a touchscreen map
interface to place waypoints, enabling the RCVs to navigate autonomously
while avoiding obstacles. Gunners engaged enemy forces, supported by
an autonomous target recognition system that highlighted opposing forces
on their display. Additionally, gunners used a touchscreen map to mark
critical areas of interest, such as bombed buildings or strategic locations.
Commanders monitored team status (e.g., vehicle health, task assignments)
and directed squad actions through predefined ‘plays.’ These plays included
movement formations for advancing toward objectives and battle drills for
engaging enemy forces.

In half of the missions, teams were provided with ADSS designed
to enhance task coordination and situational awareness. These systems
generated real-time cues to alert team members to events where task switches
or play calls might be advantageous. Participants could then use a flexible
tasking tool to dynamically reallocate tasks (e.g., switching from driving an
RCV to providing situational awareness for another vehicle) as needed. The
effectiveness of these ADSS in improving team performance is the primary
focus of this evaluation.
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Measures

Demographics Participants were recruited from a pool of U.S. Army
soldiers cleared for extracurricular exercises, making prior familiarity
among them likely. To account for potential impacts on team coordination,
participants rated their familiarity with each teammate on a Likert scale
(15). Additionally, participants reported their overall video game experience,
number of hours spent playing video games per week, and the relative
frequency of playing, as these factors could influence their baseline ability
to operate the simulation platform.
Workload Participants completed a battery of questionnaires at the end

of each mission. We focus on only a subset in the current study. Perceived
cognitive workload was captured using the NASA-TLX (Hart, & Staveland,
1988). In line with the methods in Johnston et al. (2013), we removed item
5 from the NASA-TLX, the item assessing prediction of performance. This
was done because, as they noted, it “is conceptually distinct from measures
of workload traditionally used in cognitive load theory” (p. 257), the theory
uponwhich team cognitive efficiency is based (see Kalyuga, Chandler, Sweller,
1999).
Team performance Since delays in any individual role’s performance

directly impacted the team’s overall mission completion time. We chose total
mission duration as a comprehensive metric that reflected both individual
role performance and the team’s ability to coordinate effectively across their
interdependent tasks.
Communication Team members wore individual lapel microphones that

captured their speech throughout each mission. Audio recordings were
transcribed using WhisperX (Bain et al., 2023), which also identified
individual speakers. The transcripts were then cleaned to retain only the
primary speaker’s speech. We analyzed these transcripts using Linguistic
Inquiry and Word Count (LIWC, 2022) to quantify three key categories:
Insight. According to Kozlowski & Ilgen (2006) effective teams engage in

reflective communication that helps them adapt to dynamic tasks. Therefore,
an increase in insight-related language (e.g., “Personally, I don’t think that’s
a good idea here”) may suggest that the ADSS facilitates deeper cognitive
processing and problem-solving, which are critical for team coordination in
complex tasks.
Perception.An increase in perceptual words (e.g., “They are on your left”)

could indicate heightened situational awareness. This would provide evidence
that the ADSS allowed team members to redistribute cognitive resources to
share information important for overall team coordination.
Tone. Positive tone during complex problem solving has been associated

with positive team emergent states such as higher team morale, trust,
and psychological safety (Edmondon, 1999). Higher positive tone during
technology use may indicate greater cognitive bandwidth for social
interaction, as teams with sufficient cognitive resources can engage in
supportive communication andmaintain positive team dynamics. Conversely,
teams under high cognitive load often exhibit reduced social communication
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and more negative tone. Therefore, positive tone can serve as an indirect
indicator of cognitive resource availability and team cohesion.
Team cognitive efficiency The team cognitive efficiency score was

calculated by taking the difference between the standardized workload and
performance scores. Scores can be positive or negative. Positive results
indicate comparatively better team performance in proportion to individual
reported workload, while negative scores indicate worse team performance
compared to workload, allowing us to examine how cognitive workload at
the individual level manifests in collective outcomes. This shift in perspective
illuminates the value of workload reduction as an independent benefit, while
acknowledging its potential to enable conditions that support sustained team
effectiveness.

RESULTS

All analyses were conducted in R (R Core Team, 2021). We started by
investigating demographics. For each variable, we conducted a Welch’s two
sample t-test to determine whether the mean responses were significantly
different between the two teams. There were significant differences between
the two teams in terms of their prior familiarity with each other (M1 = 2.62,
M2 = 1.84, t(19.15) = 2.65, p <.01) but not in terms of their overall
gaming experience (t(25.60) = 0, p = 1), hours spent playing games per
week (t(25.98) = −0.31, p = .76), or gaming frequency (t(23.88) = 0.37,
p= .71). Because there was a significant difference of familiarity between the
two teams, we isolated team as a factor within the model building process
to investigate its relative contribution to cognitive efficiency. Specifically,
because research shows that team familiarity has an effect on processes
and outcomes (e.g., Gruenfeld et al., 1996; Smith-Jentsch et al., 2009),
it was included in the hypothesis testing. But the other, non-significant
gaming-related demographic variables, were not.

To investigate the relationship between team cognitive efficiency and the
use of the ADSS, the results were evaluated through progressive model
building to understand the relative contribution of each factor. In each
model, team cognitive efficiency was the dependent variable and the
unique participant IDs were entered as a random effect to control for the
dependence of observations. All models were calculated using R’s lme4
package (Bates et al., 2015). All variables were scaled to allow for easier
model interpretation, and so beta (β) coefficients represent the estimated
change in the dependent variable for every one standard deviation change in
the independent variable (see Table 1 for complete results). The assumptions
for mixed-effects modeling were met. Team cognitive efficiency scores were
normally distributed (Shapiro-Wilk, p <.05), and predictors showed no
concerning multicollinearity (all VIFs < 2.0).

Our primary variable of interest, the presence of the autonomous decision
support system (Tech), was entered as the sole fixed effect in Model 1
(Table 1). Next, team (one or two) and then role (commander, driver, or
gunner) were entered separately to investigate the impacts of the nested
structure of the experiment (Models 2 and 3, respectively). Team and role
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were then entered together to control their combined effects (Model 4).
Lastly, role and team were treated as interactions to investigate their unique
relationships with team cognitive efficiency (Model 5).

Table 1: Hierarchical linear mixed effects models predicting team cognitive
efficiency.

Model
Predictors 1 2 3 4 5

(Intercept) −.58*** −.46* −.29 −.16 .04
Tech[On] .54*** .54*** .55*** .54*** .06
Team . −.24 . −.24 −.45*
Role . . −.59** −.59** −.62**
Tech[On] x Team . . . . .64***
Tech[On] x Role . . . . .11

Marginal R2 .071 .100 .199 .224 .245

Note: Asterisks indicate significance; *** at p <.001, ** at p <.01, and * at p <.05.

The base model (Model 1) showed a significant positive effect of the
ADSS (β = .54, p <.001), indicating that when teams used the system, they
performed more efficiently relative to their reported workload (Figure 1).

The main effect of technology use remained stable when team differences
were introduced as a fixed factor in Model 2 (β = .54, p <.001), reinforcing
its robustness. The non-significant team effect (β = −.24, p = .334),
and minimal increase in explained variance (56.1 % to 57.6%), suggests
team differences had little impact on cognitive efficiency when controlling
for technology. Thus, although Figure 1 shows that the less familiar team
benefited more, the system’s overall benefit was consistent across teams when
team-specific factors were not considered.

Model 3 introduced role as a predictor and maintained the significant
effect of technology (β = .55, p <.001), while also revealing a significant
effect of role (β = −.59, p <.01). To investigate the impact of role, we
recreated Model 3 by setting the reference category to each role to obtain
pairwise comparisons. For each iteration, there was a significant positive
effect of technology (β = .47, p <.0001). Compared to gunners, drivers
showed significantly higher cognitive efficiency scores (β = .54, p = .011),
while commanders were not significantly different (p = .38, p = .215).
Importantly, there was a non-significant interaction between technology and
the role of driver (β = −.07, p = .555). As can be seen with their similar
slopes (Figure 2), both drivers and gunners similarly benefited from the
ADSS. In contrast, commanders showed a significantly different response
pattern (β = −.47, p = .013), with a much smaller benefit from technology.
These findings suggest that benefits of the ADSS were unique and consistent
between drivers and gunners, but not commanders. Despite this, the overall
explained variance decreased slightly (56.7%), indicating role differences
added limited predictive value.
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Figure 1: Interaction between ADSS and team on CE.

Figure 2: Interaction between ADSS and role on CE.

This pattern of results persisted in Model 4 when both role and team
were included. That is, there was a significant main effect of technology use
(β = .54, p <.001), non-significant effects associated with team (β = −.24,
p = .334), and significant effects associated with role (β = −.59, p <.01).
The explained variance increased slightly to 57.9%, suggesting that both role
and team contributed to the model, but team was the stronger predictor. This
reinforces the idea that role-specific factors and team familiarity play a part
in shaping cognitive efficiency.

However, the final model (Model 5) revealed a more nuanced relationship
between these variables. While the main effect of technology became
nonsignificant (β = .11, p = .342), the main effects of team (β = −.45,
p <.05) and role (β = −.62, p <.01) remained significant. The interaction
between technology use and role indicated that the ADSS’s impact was
consistent across roles in both teams. However, the significant interaction
between technology use and team (β = .64, p <.001) revealed that the
benefits of the ADSS varied substantially between teams. While both teams
showed improved team cognitive efficiency with the technology, team two
demonstratedmarkedly greater gains, improving from−.70 to .00, compared
to team one’s more modest improvement from −.27 to −.07 (Figure 1).
The explained variance also increased from 57.9% in Model 4 to 59.2%,
indicating that the interaction term added meaningful explanatory power
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to the model. Simply put, these results indicate that while the technology
benefited both teams, its impact was stronger for team two; that is, the effect
of the ADSS was greater when the team had lower familiarity with each other.

Next, we examined how technology conditions influenced different
aspects of communication using separate linear regressions. For each analysis,
we used the specific communication variable as the outcome, technology
condition as the predictor and team as a fixed factor (see Table 2 for complete
results). All variables were scaled to allow for easier model interpretation.

The analyses revealed several significant effects of technology use on
communication patterns. Participants used more insightful words (β = .29,
p <.001) and had a higher positive tone (β = .21, p <.001) during technology
conditions. However, the use of perceptual words remained consistent across
conditions (β =−.04 p= .68). Notably, none of the communication variables
showed significant team differences, as evidenced by non-significant effects of
team (p >.05). This indicates that the technology’s impact on communication
patterns was consistent across both teams.

Table 2: Effects of ADSS condition and team on communication variables.

Insight Tone Perception

Predictor β p β p β p

Tech (On) .29*** <.001 .23*** <.001 .13 .06
Team .33 .62 .18 .56 .04 .67

Marginal R2 .43 .25 .32
Adjusted R2 .37 .19 .26

Note: Asterisks indicate significance; *** at p <.001, ** at p <.01, and * at p <.05.

DISCUSSION

Taking the five hierarchical models together, we conclude that hypothesis one
was supported. The ADSS improved team performance outcomes above and
beyond the increases to individual workload. This conclusion is supported by
the significant main effect of technology in Models 1–4, which consistently
showed that when teams used the system, they achieved higher cognitive
efficiency scores.

We also conclude that hypothesis two was supported. The ADSS was
not as beneficial for commanders, as indicated by the significant negative
effects of role in Models 3–5 and the subsequent pairwise comparisons in
step 3. This finding highlights the importance of role-specific considerations
when designing and implementing such systems. In this context, commanders
likely did not benefit from the ADSS to the same degree because, while
the AI delivered suggestions that changed how they gathered information,
they still needed to critically evaluate these suggestions before distributing
them to the team. Importantly, this finding reinforces our earlier point that
examining individual changes may not be appropriate in team contexts.
The commander was able to facilitate better coordination amongst team
members without diminishing their own efficiency, which is a critical insight
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for system evaluation. While traditional evaluations might focus solely
on individual improvement, our results demonstrate that the value of an
ADSS should be measured by its impact on the entire team’s functioning.
Even though the commander’s personal efficiency metrics did not improve,
the team’s performance as a whole did, suggesting the team effectively
leveraged the system to enhance team coordination and performance. This
emphasizes the need for evaluation frameworks that capture both individual
and collective outcomes when assessing technological interventions in team
environments.

Additionally, although not hypothesized, the ADSS was more beneficial
for team two, as indicated by the significant Tech[On] × team interaction
in Model 5. The main effect of technology being non-significant in this
model does not negate its overall benefits. Rather, the team that had
lower familiarity among teammates (team two), had much lower cognitive
efficiency scores when not using the automated decision support. But, when
team two had the ADSS, their scores markedly improved and were near equal
to team one. Because team one had members significantly more familiar with
each other, this suggests that the ADSS was able to overcome coordination
challenges brought on by a lack of teammate familiarity. The greater benefit
observed by team two underscores the importance of contextual factors in
shaping the success of autonomous systems. It also highlights that leveraging
autonomous systems in a given context may not be one-size-fit-all, with some
teams disproportionately benefiting. This aligns with recent work onHuman-
AI teams showing that teams with lower collaborative potential performed
better when paired with an AI coach, but teams with high collaborative
potential did not (Bendell et al., 2024).

Lastly, we conclude that hypothesis three was supported. Team
communication processes were different between technology conditions.
The findings that teams exhibited more insight-related language and a
more positive tone when they used the ADSS suggests improvement in
team communication and cognitive processes (e.g., Mathieu et al., 2000;
Stout et al., 2000). The increase in insight-related language indicates that
the ADSS facilitated deeper cognitive engagement and reflective thinking,
which are critical for developing shared mental models and enhancing team
reflexivity (Kozlowski & Ilgen, 2006). This aligns with prior research
showing that teams that engage in insight-oriented communication are better
equipped to analyze complex situations, adapt strategies, and coordinate
effectively (Mathieu et al., 2000). The more positive tone observed in
team communication further highlights the role of the ADSS in fostering
a supportive and collaborative environment. Positive communication is
closely linked to psychological safety and trust (Edmondson, 1999), which
are essential for open dialogue and effective coordination, particularly in
highstakes or dynamic tasks. Together, these findings highlight the ADSS’s
potential to impact team communication by promoting cognitive depth
and positivity, which are foundational to effective team coordination and
performance.

The findings from this study offer several actionable insights for
practitioners and researchers aiming to implement or evaluate ADSS’s
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in team settings. Understanding the relationship between workload
and performance can help stakeholders make informed decisions about
autonomous technology implementation. Specifically, our findings suggest
that measuring success solely through immediate performance gains may
overlook crucial benefits in cognitive resource management, team dynamics,
and team effectiveness.

The ADSS demonstrated clear benefits for team performance, particularly
in enhancing cognitive efficiency and bridging performance gaps between
teams. This suggests that such systems can be valuable tools for improving
team outcomes, especially in contexts where performance disparities exist.
However, the role-specific challenges faced by commanders highlight the
importance of designing adaptable systems that account for the unique
demands of different roles. Practitioners should consider tailoring ADSS
functionalities to align with role-specific tasks and workflows, ensuring that
all team members can fully leverage the technology.

Furthermore, the observed improvements in team communication
reinforce the ADSS’s potential to foster more effective and cohesive team
dynamics. When assessing the impact of similar technologies, it is crucial to
evaluate not only performance outcomes but also team processes, as these are
key indicators of team coordination and functionality. By focusing on both
performance and communication, organizations can better understand how
autonomous systems influence team processes and identify opportunities for
optimization.
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