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ABSTRACT

In lunar exploration, astronauts’ cognitive load critically impacts the efficacy of
Human-Computer Collaboration (HCC). Effective management of cognitive load
is essential for lunar mission success. Current research on HCC cognitive load
primarily focuses on post-hoc evaluation, failing to leverage real-time assessment
and quantitative outcomes, thus misaligning with actual mission demands. Given
the interdependence between machine intelligence levels and astronauts’ cognitive
states, this study proposes an innovative Virtual Reality (VR)-based training system.
Centered on three prototypical lunar missions, the system dynamically adjusts task
difficulty and machine intelligence levels based on real-time cognitive load monitoring,
deliberately exposing astronauts to varying cognitive stress levels. State-of-the-art
sensors continuously capture multimodal physiological data (e.g., GSR, HR, SpO»),
enabling real-time task reallocation through an adaptive system. This VR framework
holistically addresses multifactorial influences on astronauts’ HCC performance in
complex lunar environments, establishing a closed-loop integration of physiological
data acquisition, cognitive load evaluation, intelligence level modulation, and task
difficulty adjustment. By advancing a novel paradigm for optimizing HCC efficiency,
this work lays a critical foundation for future lunar exploration in high-demand
settings.
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INTRODUCTION

As lunar exploration missions continue to advance, Human-Computer
Collaboration (HCC) in complex tasks is becoming increasingly critical
(Xie et al., 2022; Ortega et al., 2021). Lunar exploration operations,
encompassing surface sampling, equipment maintenance, and scientific
experiments, are inherently high-risk activities that demand exceptional
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cognitive and operational competencies from astronauts (Lin et al., 2024).
Research has highlighted the challenges of managing cognitive load in such
high-stakes environments (Sewell et al., 2018), emphasizing the need for
adaptive systems to manage workload in complex tasks (Wickens et al.,
2021). Despite these advancements, astronauts frequently encounter high
cognitive loads during task execution, which can lead to decreased task
performance and operational errors (Endsley et al., 20165 Chen et al., 2014).
Therefore, effectively managing astronauts’ cognitive load and optimizing
HCC efficiency have become urgent challenges for current lunar exploration
missions.

In recent years, virtual reality (VR) technology has emerged as a highly
immersive simulation tool, widely used in human factors engineering
research. Studies have explored VR’s potential in creating realistic training
environments, demonstrating its ability to simulate complex operational
scenarios with high fidelity (Aylward et al., 2021). Further research
has emphasized VR’s role in enhancing user immersion and engagement,
making it an ideal platform for studying human-computer interaction
(Han et al., 2017). The integration of VR into human systems has been
discussed, particularly in military and aerospace applications, where it
has been used to improve task performance and reduce training costs
(Pirker et al., 2022). Additionally, VR has been highlighted as a tool
for simulating high-stress environments, such as space missions, where
real-world training is impractical (Finseth et al., 2022). Despite these
benefits, existing VR systems still face limitations in cognitive load
management, including the lack of dynamic task allocation mechanisms
and real-time load adjustment capabilities (ElGibreen et al., 2019). This
underscores the urgent need to develop an adaptive task allocation system
based on VR, which has both significant research value and practical
importance.

Cognitive Load Theory (CLT) provides a theoretical framework for
task allocation and human-computer collaboration. CLT was introduced
to understand how cognitive load affects learning and performance,
categorizing it into intrinsic, extraneous, and germane loads (Schnotz et al.,
2007). The theory initially proposed that intrinsic load relates to task
complexity, extraneous load to the task’s presentation, and germane load to
the learning process (Bannert et al., 2002). Subsequent research has expanded
this framework, demonstrating how CLT can optimize instructional
design and task performance (Haji et al, 2015). In lunar exploration
tasks, astronauts’ cognitive load primarily results from task complexity,
environmental stress, and information processing demands (Nasrini et al.,
2020). Therefore, real-time monitoring and classification of cognitive load,
combined with dynamic task allocation strategies, can effectively reduce
astronauts’ cognitive burden and improve task performance (Gutiérrez et al.,
2023). However, most of the existing research on HCC cognitive load
mainly focuses on the assessment of cognitive load after the task, lacking the
monitoring of cognitive load during the task and the utilization of relevant
data (Longo et al., 2019). Real-time cognitive load feedback is of crucial
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importance in critical and high-risk missions like lunar missions (Kyriaki
et al.,2024).

Despite progress in human-computer collaboration research, most studies
have focused on controlled environments, such as cockpit and aircraft
cabin settings. Research has shown that while automation can reduce
workload, it can also lead to complacency and skill degradation (Endsley
et al., 2016). Similarly, studies on HCC in military operations have found
that effective communication and task allocation are critical for mission
success (Li et al., 2021). However, there is a significant gap in research
addressing the complexities of lunar exploration environments, where
human-computer collaboration must contend with unique challenges such
as low gravity, limited communication, and high-stakes decision-making.
Furthermore, while VR has been used as a tool to experience unknown
environments, it has not yet been fully utilized as a quantitative tool for
assessing cognitive load in these complex scenarios. Recent developments
have demonstrated the potential of VR-based cognitive training systems
for real-time cognitive load monitoring, and the ability of VR to capture
physiological data in immersive environments has also been explored
(Shen et al., 2021). However, these studies have not addressed the
specific needs of lunar exploration tasks, underscoring the urgency of
developing a robust framework for cognitive load management in these
scenarios.

This study makes two significant contributions: 1) It proposes a three-
level cognitive load classification system for adaptive task allocation,
enabling real-time monitoring and adjustment of intelligence level based on
multimodal physiological data. 2) It designs and develops a VR-based Lunar
mission simulation environment, providing a high-fidelity experimental
platform for cognitive load reallocation research.

SYSTEM DESIGN

Human-machine task allocation directly affects astronauts’ cognitive load. A
task allocation system based on real-time cognitive load data allows dynamic
adjustments between humans and machines, optimizing cognitive load and
enhancing performance. The machine’s intelligence level is inversely related
to astronaut cognitive load: as machine intelligence increases, cognitive
load decreases, collectively forming different HCC modes (see Figure 1).
Traditionally, machine intelligence is classified into 5 or 10 levels (Endsley
et al., 1987), ranging from fully human-executed tasks to fully machine-
executed tasks. However, this complexity hinders system design, particularly
in lunar exploration, where tasks are multifaceted. Therefore, this study
simplifies the classification to three levels (see Table 1), corresponding to
three levels of human cognitive load (see Table 2).
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Figure 1: Cognitive load-based intelligence level adjustment model.

Table 1: Machine intelligence level settings.

Level of Intelligence Feature

Level 1 Providing device information perception, no
environmental awareness, and the machine does not
perform any automated tasks.

Level 2 Provides device information perception and basic
environmental awareness and analysis, but cannot
execute or make decisions.

Level 3 Autonomous perception and analysis, offers
operational suggestions, execute and make decisions.

Table 2: Human cognitive load level settings.

Level of Level of Feature
Cognitive Load Intelligence

Level 1 Level 3 Human’s psychological and physiological state
is relaxed, and the task execution proceeds
smoothly.

Level 2 Level 2 Human’s cognitive load is at a moderate level;

although the task can still be completed,
some small errors may begin to occur.
Level 3 Level 1 Huaman’s cognitive load is extremely high,
task performance may be noticeably
affected, and the error rate is higher.
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Figure 2: System construction and model training.

In terms of cognitive load classification and quantification, the study
adopted a multimodal data fusion approach, combining psychological,
physiological, and task execution indicators to form a comprehensive
Cognitive Load Score (CLS). As shown in Figure 2, we developed a Three-
Level Cognitive Load Classification System, which utilized a Random Forest
Classifier trained on the ASCERTAIN dataset to classify cognitive load levels
in real time. The dataset, which includes physiological signals such as GSR,
HR, and SpO,, was used in this study. The raw data was preprocessed
by removing noise, normalizing the signals, and addressing any missing
values. The relationship between these physiological signals and cognitive
load is as follows: GSR reflects psychological load, with greater fluctuations
indicating increased mental effort or stress. HR variability (SDNN, RMSSD)
and SpO; levels were used to assess physiological load, as elevated HR
and decreased SpO; generally indicate higher physiological strain. The Task
Performance Score (TPS) was derived from task completion time and error
rate, with longer completion times and higher error rates corresponding to
greater cognitive load. The three key scores—PLS, PhLS, and TPS—formed
the feature set:

Features = [PLS, PhLS, TPS]
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This feature set was used as input to train a Random Forest Classifier. The
model’s performance was evaluated using metrics such as accuracy, precision,
recall, and F1 score, ensuring the accurate classification of cognitive load into
three levels: Low (L1), Medium (L2), and High (L3). Finally, to facilitate real-
time monitoring during subsequent training or experiments, a visualization
system was developed. This system displays the real-time cognitive load
status of the user by using the trained model to classify cognitive load
levels, while also visualizing the physiological data (HR, GSR, SpO;) over
time. The interface provides immediate feedback on the user’s cognitive
load, enabling adaptive task allocation and optimizing human-computer
collaboration, thus improving task performance and safety. By integrating
multimodal physiological data with machine learning, this system provides an
efficient solution for cognitive load classification and real-time monitoring.

METHOD

Virtual Task Design

The Virtual HCC training task design is conducted entirely using VR, with
participants wearing VR headsets throughout the process. The primary
means of interaction are through the use of controllers and hand gestures
to control the Machine (Intelligent lunar rover). Additionally, in Task 2
and Task 3, voice interaction is incorporated to to control the lunar
rover to enhance the user experience. The VR interface displays complex
information, providing a comprehensive and immersive environment for
task execution. This design allows for an integrated evaluation of human-
machine collaboration under different levels of intelligence, utilizing
advanced interactive technologies to ensure smooth task completion in lunar
exploration scenarios.

Specifically, as shown in Figure 3, these tasks are not only exemplary
but also thoroughly exhibit the cooperation modalities and efficiencies
between humans and machines at diverse intelligence levels, all made possible
within the immersive VR environment. According to a three-level cognitive
load classification system, as the cognitive load (L1, L2, L3) varies, the
machine’s intelligence level correspondingly adjusts to match the grade.
Concurrently, the tasks assigned to users under different intelligence levels
are also adapted accordingly. This is to alleviate the task complexity for
users under high cognitive load and reduce the cognitive burden. Task1 is
reaching the collection point while circumventing obstacles. The objective
is to guarantee the vehicle’s smooth arrival at the lunar surface collection
point and steer clear of impediments en route. Varied intelligence levels
entail distinct operational approaches. In the L1 stage, where humans hold
the decision-making authority, the operator manually charts the route and
maneuvers the vehicle. When transitioning to the L2 stage, with the machine
lending assistance to humans, the system offers cues for the nearest available
route. Advancing to the L3 stage, where the machine assumes decision-
making power, it autonomously plans the route and undertakes navigation.
The lunar soil drilling task mandates drilling operations on the lunar surface.
As the intelligence level ascends, control progressively transfers from humans



Adaptive Task Reallocation for Lunar Exploration: Cognitive Load Management 39

to machines. At the L1 level, the operator manually governs the drilling depth
and angle. By the L2 stage, the system prompts the operator to make requisite
adjustments. Come the L3 stage, the system seizes full control of the drilling
process, automatically calibrating the drill bit’s angle and depth based on
real-time data. The lunar soil surface sampling task zeroes in on sampling the
lunar soil surface. Mirroring other tasks, the operation gradually transforms
from manual control to automated system control. In the L1 stage, the
operator dictates the commencement and conclusion of sample collection.
In the L2 stage, the system proffers prompts for sampling maneuvers. Finally,
in the L3 stage, the machine assumes complete responsibility for fulfilling the
collection and storage procedures.
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Figure 3: Design of lunar surface missions based on the level of intelligence.

VR Training System Design and Development

The system is deployed on the Meta Quest 2 and developed using Unreal
Engine (UE), providing an immersive virtual reality (VR) environment
that supports multiple modes of user interaction, including controller-
based input, gesture recognition, and voice commands. Controller-based
interaction allows users to intuitively manipulate the virtual environment and
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perform tasks, while the gesture recognition system, which utilizes advanced
hand tracking technology, enables natural, touch-free input, enhancing
user engagement. Additionally, voice interaction capabilities are integrated,
enabling users to issue commands or receive feedback through speech, further
improving accessibility and usability.

For physiological data acquisition, the system utilizes the Neuracle
multimodal data collection tool, which facilitates real-time monitoring of
key physiological signals, including heart rate (HR), electrodermal activity
(GSR), and blood oxygen saturation (SpO;). These physiological signals
play a pivotal role in quantifying cognitive load, allowing for continuous,
real-time assessment of the user’s mental and physical workload during task
execution.

As shown in Figure 4, in the training scenario, one observer monitors
the system to ensure accurate experimental records, while the trainee,
equipped with the VR headset, sequentially performs three distinct tasks
within the VR environment. The system integrates these task performances
with the Three-Level Cognitive Load Classification System, leveraging real-
time physiological data to evaluate and classify cognitive load into three
distinct levels: low, medium, and high. Based on this classification, the
system dynamically adjusts the automation level of the intelligent lunar rover,
providing personalized feedback on task load. This adaptive mechanism
ensures that the rover’s automation is in sync with the user’s cognitive
state, enhancing task performance and user safety by optimizing human-
machine collaboration. The continuous feedback and adjustment of cognitive
load also facilitate real-time decision-making, thereby improving the overall
efficacy and safety of the training process.

@ Observer @ Traitier

~

Figure 4: Specific training scenario.

CONCLUSION AND FUTUREWORK

This study has made notable progress in handling HCC challenges for
lunar exploration. The three-level cognitive load classification system and
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VR-based lunar task simulation environment are crucial steps towards
optimizing astronaut-machine cooperation and reducing cognitive load. By
combining multimodal psychological, physiological, and task performance
data, we’ve enabled efficient task allocation between humans and machines.
The VR training system offers a great platform for HCC research with task
reallocation.

Looking ahead, future efforts will focus on key aspects. Firstly,
we’ll expand our multimodal physiological data collection. Incorporating
brainwave and eye-tracking data will deepen our understanding of
astronauts’ cognitive states, especially during complex lunar tasks. This
addition will enhance the precision of our cognitive load classification,
providing more accurate support for task redistribution. Secondly, more
diverse and challenging mission scenarios will be designed. From handling
equipment malfunctions at lunar bases to conducting long-distance sample
collections, these scenarios will better equip astronauts for the uncertainties
of actual lunar exploration. This will not only test the adaptability of our
HCC systems but also improve astronauts’ practical skills. Most importantly,
we’ll conduct full-scale system validation experiments. By testing our HCC
frameworks in analog space environments replicating lunar conditions, we
can identify and address potential issues. This real-world verification is
essential for the application of our technologies in upcoming lunar base
construction and long-duration missions. We look forward to the fact
that our research will play a significant part in facilitating the training of
astronauts for future long-term lunar assignments.
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