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ABSTRACT

As cyber threats grow more advanced, there is a urgent need for models that can
simulate and anticipate adversarial behavior. While honeypots have been widely used
in deception-based cybersecurity, less is known about how cognitive and Al-based
models replicate human decision-making in realistic attack scenarios. This study uses
the Team HacklT simulator to evaluate how well Instance-Based Learning (IBL) and
GPT-4o0, a Large Language Model (LLM), mimic human cyber-attack strategies across
varied network topologies and sizes. The decay (d) and noise (¢) parameters included
in the IBL model were calibrated from the ACT-R defaults (d = 0.5, ¢ = 0.25), and
ranged from 0.1 to 3. Calibrated IBL parameters (decay and noise) improved predictive
accuracy, especially in smaller networks (MSE = 0.060 for honeypots, 0.002 for real
systems). With temperature (0.5, 1, 1.5) and top-k sampling (2, 3, 4) GPT-4o0 also
aligned well with human behavior in 40-node networks (MSE < 1.000) but performed
less accurately in 500-node configurations (MSE up to 25.000). These findings provide
insights into adversarial modeling and suggest that combining cognitive and Al-based
approaches can enhance deception-aware cyber-defense strategies.

Keywords: Behavioral cybersecurity, Instance-based learning (IBL), Large language models
(LLMs), Hackit simulator, Human decision-making, Behavior modeling

INTRODUCTION

Artificial intelligence (AI) and machine learning have advanced quickly,
creating new opportunities to comprehend and mimic human decision-
making in a variety of fields (Bhatt et al., 2023). Understanding adversarial
tactics in cybersecurity contexts requires cognitive behavior, which is defined
as the capacity to receive, analyze, remember, and use information in
decision-making (Anderson, 1990). The field still lacks thorough research on
how cognitive models like Instance-Based Learning (IBL) and large language
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models (LLMs) like GPT-40 can mimic human cyber-attack strategies,
despite the notable advancements made in machine learning applications for
anomaly detection and attack prevention (Wazid et al., 2022). In the field
of cybersecurity, cognitive elements including action variety, frequency, and
recency often impact adversarial decision-making (Gonzalez et al., 2003).
Although cognitive models—especially those derived from IBL theory—have
been used for dynamic decision-making tasks (Gonzalez & Dutt, 2011;
Dutt & Gonzalez, 2012), little is known about how they may be used
in cybersecurity scenarios including deceit. Nevertheless, there hasn’t been
a comprehensive investigation of the predicted accuracy of IBL models in
detecting honeypots and normal systems, as well as how this accuracy
varies with network size and topology. To close this gap and get a better
understanding of adversarial behavior across different network topologies
and sizes, this research calibrates the IBL model.

Concurrent with cognitive modeling, LLMs such as GPT-40 have emerged
with strong capacities for processing large datasets, and imitating human
behavior (Brown et al., 2020). For cybersecurity activities like automated
penetration testing and vulnerability identification, LLMs have shown
potential (Zhang et al., 2023). The potential of LLMs for autonomous
red teaming was recently emphasized by Itonin et al. (2024), but their
performance was not examined across various network topologies or
parameter changes. In order to close these gaps, this study compares the
performance of GPT-40, IBL, and humans while assaulting networks with
different topologies and sizes using the Team HackIT simulation program. In
the dynamic environment provided by Team HackIT, players must navigate
misleading honeypots intended to deceive attackers while identifying and
exploiting vulnerabilities (Aggarwal & Dutt, 2020). We want to determine
the unique advantages and disadvantages of these models in simulating the
actions of human attackers by adjusting the network topology (Bus vs.
Hybrid) and size (40 vs. 500 nodes), as well as by adjusting model parameters
like decay and noise for IBL and temperature and top-k sampling for GPT-40.

This study investigates the interplay between human and model judgments
under various settings, in contrast to earlier research that concentrated
on either algorithmic performance or human decisions alone. The study
compares two approaches Instance-Based Learning (IBL) and GPT-40 using
the Team HackIT simulation platform, across varying network topologies
(Bus vs. Hybrid) and sizes (40 vs. 500). Both human and model behaviors
were assessed across three dependent variables: total systems exploited, total
honeypots exploited, and total real systems exploited. The primary objectives
were to compare the fidelity of IBL and GPT-40 in reproducing human
decision patterns, and examine the influence of network complexity on
model accuracy. We speculated that the IBL model rooted in human cognitive
principles would more accurately mirror human decision patterns, especially
in simpler environments, while GPT-40, with its exploratory tendencies,
might exhibit greater variability in performance. To test this, we compared
the predictive accuracy of each model against human behavior. Our analysis
revealed some compelling differences between the two approaches, which
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offer valuable insights into their respective strengths and limitations in
modeling adversarial behavior.

Background

According to Aggarwal and Dutt (2020), researchers have created a program
called HackIT that uses behavioral game theory ideas to correctly simulate
a cyberattack scenario. Network size, honeypot dimensions, and deception
strategies are some of the factors that greatly influence adversarial decisions.
For example, in a deception-based game using honeypots, Katakwar et al.
(2020) investigated the effects of varying network sizes on adversarial
decision-making. In addition, Katakwar et al. (2022) created a computer
cognitive model based on Instance-Based Learning Theory (IBLT) to mimic
human behavior in deception scenarios. When calibrated with human data,
the model showed that participants relied too much on frequency and recency.

Previous studies have shown the importance of deception in cyber
protection. Rowe and Custy (2007), for instance, examined a number of
misleading strategies to deceive attackers, highlighting the cognitive effects
of deception. In a similar vein, Almeshekah and Spafford (2016) examined
how misleading methods affect adversarial decision-making psychologically
and demonstrated how strategically placed honeypots may deceive attackers
and stall harmful activity. The predictive capabilities of IBL models in
situations with different network topologies and sizes are still not well
understood, despite these discoveries. The purpose of this research is to
close this gap by using IBL models in various network topologies and
adjusting their parameters to match observed human behavior. Greater
decay and lower noise values in IBL models for smaller networks indicate
that participants make fewer variable choices and depend more on recent
experiences. Participants target ordinary web servers more often in medium-
sized networks, perhaps because they are more used to previous successful
operations. On the other hand, with bigger networks, participants investigate
a wider range of systems due to increased noise and decreased decay
(Katakwar et al., 2022). The current study investigates the relationship
between these cognitive inclinations and network size and structure.

At the same time, LLMs such as GPT-40 show promise as cybersecurity
tools. Because they were trained on large datasets, these models perform very
well in real-time attack simulations, contextual reasoning, and vulnerability
assessment (Brown et al., 2020; Radford et al., 2019). LLMs’ effectiveness
in offensive cyberattack simulations is still mostly unknown, despite the fact
that they have been well researched in anomaly detection (Sommer & Paxson,
2010; Zhang et al., 2023). LLMs can be used for autonomous red teaming,
according to recent research by Itonin et al. (2024); however, further research
is needed to understand how LLM choices interact with human tactics in
dynamic, deception-based situations. In this work, we fill this research gap
by comparing the IBL and GPT-40 decision-making processes in a variety of
cybersecurity situations using the Team HackIT tool. We examine how well
the GPT-40 and IBL models identify honeypots and target actual systems by
varying the temperature and Top-K parameters, as well as decay and noise.
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Team HackIT

A web-based testbed called Team HackIT was created to support multiplayer
cyber deception tests in a variety of cybersecurity situations, such as
different network topologies and sizes. It offers a command-line interface
for easy interaction and an interactive, game-like interface that mimics real-
time cyberattacks (see Figure 1). Real systems and honeypots are the two
main system kinds that the platform differentiates between. Honeypots are
malicious systems designed to seem like authentic ones in order to trick
attackers. Their main goals are to watch how attackers behave, evaluate their
strategies, and protect legitimate systems by rerouting harmful activity. In the
Team HackIT setting, participants work together in pairs. One person creates
a virtual room to start the session, and the other person joins using a special
room ID. After entering, the participant’s first assignment is to list all of the
systems that are accessible in order to evaluate the network. They then probe
these systems to find important data, like open ports, active services, and
vulnerabilities that may be exploited.

Figure 1: Demonstration of “Nmap” command being used in the probe phase.

A data table detailing the network’s current state and possible access sites
is shown to participants during the probing phase (see Figure 1). Participants
use this information to choose whether to carry out an attack, focusing on
systems with known vulnerabilities. A successful exploitation simulates the
exfiltration of sensitive data by giving participants access to the target system
and enabling them to obtain a specific file (pin.txt). Team HackIT records
every action taken by participants throughout the experiment, including
system probes, attack plans, and successful exploits.

METHODS

Participants

A total of 84 participants willingly took part in this cybersecurity experiment;
all students from the Indian Institute of Technology Mandi, participated
in this study. Before starting the study, consent was obtained from all the
participants. The total duration of the experiment was 10 minutes. The
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participant’s demographics included both boys and girls, with ages ranging
from 18 to 27 years (mean = 20.88, standard deviation = 1.67 years).
Eighty-five percent of the participants were male, and fifteen percent were
female. Out of those who took part, about 72.5% were bachelor’s students,
and 27.5% were master’s students. The study was approved by the Indian
Institute of Technology Mandi’s Ethical Committee.

Experimental Design

Participants were randomly assigned one out of the four between-subjects
conditions. These conditions were: Bus topology with small (40 systems)
network size, Hybrid topology with small (40 systems) network size, Bus
topology with large (500 systems) network size, Hybrid topology with large
(500 systems) network size. The deception via honeypot was present in all
the conditions, consisting of 50% honeypots and 50% real systems. The
purpose of this design was to assess how participants’ attack plans and
decision-making were affected by the presence of deception. There were a
total of 10 minutes given to the participants in order to attack as many
systems as they could to maximize their reward. Participants were aware
of the deception present but they were not aware of where actually the
deception is present. Before entering the experimental tasks, participants were
provided instructions regarding the objectives of the attack and the nature of
the systems involved.

Procedure

Two bus configuration testbeds and two hybrid testbeds were set up
for two network sizes (40 and 500). The participants received essential
game instructions which included necessary commands for each stage.
The questionnaire checked whether participants had fully understood the
instructions before moving forward. The objective is to steal confidential
file “pin.txt” within the duration of 10 minutes by breaking into as many
real systems as possible. The procedure was divided into two stages: the
Attack Phase and the Probe Phase. Participants in the Probe Phase scanned
available machines using the “Nmap” command to find out about open ports,
services that were operating, and potential vulnerabilities. After selecting the
appropriate vulnerability to exploit, participants had to use the command
“use_exploit” to break into the system in the following step. After completing
an exploitation successfully users could locate “pin.txt” through the “Is”
command in the system directory. The participants used “scp” to move the
file from the target system to their own system. The participants received
their final score after completing the session.

IBL Model

Instance-Based Learning (IBL) theory (Gonzalez et al., 2003; Gonzalez
and Dutt, 2011; Dutt & Gonzalez, 2012; Lejarraga et al., 2012;
Dutt et al.,, 2013), a cognitive framework that mimics human decision-
making by depending on prior experiences (or instances), is the foundation
for the machine learning model utilized in this study. The IBL theory
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postulates that our decision-making is influenced by past experiences which
are there in memory. When something new happens, the model finds previous
examples that are similar to it and compares them using predetermined
similarity measures. The decisions made by human participants serve as the
dataset for the model to learn from. In the context of HackIT, each scenario,
such as the system number they are in, the running services or network
protocols (FTP, TCP, HTTP, DNS, etc.) and the vulnerabilities (sql_injection,
drown_attack, remote_auth, etc.) represent an instance. In order to create
a judgment that resembles human decision-making patterns as nearly as
possible, the IBL model retrieves and compares cases that are there in the
memory.

IBL Model Calibration: Decay and Noise

Two critical factors during IBL model calibration included Decay and
Noise. The model decreases its reliance on past instances through time or
through changes in situation relevance. The model prioritizes recent relevant
instances through its decay implementation, which determines decision-
making priorities. Memory reliability based on recent experiences grows
stronger when the decay (d) parameter value rises while the rate of memory
degradation accelerates. The unpredictable elements of human decision-
making can be attributed to noise. Multiple players in this game cause
their choices to differ from typical patterns. Our model seeks to replicate
human unpredictability through controlled noise implementation. The model
receives different decay and noise values for calibration before it gathers
decisions from each condition. There were a total of six values of both decay
and noise in between 0 and 3, which makes a total of 36 combinations. Also,
the model was calibrated on ACT-R default values of decay (d) and noise (o)
(d=0.5,0 =0.25).

GPT-40 Model

The Transformer architecture forms the base structure for advanced large
language model (LLM) GPT-40 that depends on self-attention to make
accurate token predictions from historical context (Vaswani et al., 2017).
GPT-40 is well-suited for complicated reasoning in multi-step adversarial
simulations because it can handle long text sequences and multi-modal inputs
(text and images) within a context window of 25,000 tokens (Brown et al.,
2020; Radford et al., 2019). GPT-40 learns to predict tokens from extensive
datasets, such as academic literature, chats, and instructional texts, during
pre-training (Raffel et al., 2020). Human assessors improve the model’s
decision-making to better suit human goals when reinforcement learning (RL)
is used with human input (Ouyang et al., 2022). Because of its versatility, it
can assess the plans of attackers and help create defenses that are more robust
(Stiennon et al., 2020).

Top-K and Temperature Tuning

The way that GPT-40 makes judgments is greatly impacted by the
temperature and Top-K factors. Top-K determines the number of likely
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tokens the model considers while generating answers. Lower Top-K
values restrict the model to high-probability alternatives, resulting in
more predictable outcomes, whereas higher Top-K values promote a more
thorough examination of potential responses (Holtzman et al., 2020). Fan
et al. (2018) claim that temperature controls randomness; higher values
favor riskier, experimental decision-making, whereas lower values increase
accuracy and predictability. This study systematically varied both variables
to investigate the effects of Top-K and temperature on GPT-40’s ability
to distinguish between real systems and honeypots. Lower temperature
and higher Top-K improved precision and decision focus, enabling
GPT-40 to mimic the decision-making processes of human attackers, but
higher temperature and lower Top-K promoted exploration

RESULTS

IBL Results

Table 1 shows the results of the IBL model with ACT-R parameters and
with calibrated parameters across different conditions. Here we can compare
the mean squared error (MSE) obtained from both the parameters. We
can observe that the MSE obtained is the least with calibrated parameters
compared to ACT-R parameters. In the case of the Real systems exploited
we can see that the MSE is the same for both the parameters across all the
conditions, but if we look for honeypots exploited and total attacks, the MSE
is lesser with calibrated parameters. In the case of Bus 500, the MSE is similar
for both the parameters in honeypots exploited and real systems exploited.

Table 1: Different model parameters and MSE for the IBL model across different

conditions.
Configuration Model d o MSE MSE MSE Total
Honeypot  Real Attacks
Hybrid 40 With ACT-R Parameters 0.50 0.25 0.130 0.002 1.000
With Calibrated 3.00 0.10 0.102 0.002 0.846
Parameters
Bus 40 With ACT-R Parameters 0.50 0.25 0.058 0.002 0.410
With Calibrated 3.00 0.68 0.058 0.002 0.314
Parameters
Hybrid 500 With ACT-R Parameters 0.50 0.25 0.194 0.014 1.440
With Calibrated 2.42 0.10 0.160 0.014 1.346
Parameters
Bus 500 With ACT-R Parameters 0.50 0.25 0.102 0.006 1.440
With Calibrated 2.42 1.84 0.102 0.006 1.440
Parameters
Hybrid 40

In the “Hybrid 40” condition, the IBL model with ACT-R parameters
(d =0.5,0 = 0.25) resulted in an MSE of 0.1296 for the honeypot systems,
0.0016 for real systems, and 1.0 for total exploit. The MSE values marginally
improved when calibrated parameters (d = 3,6 = 0.1) were used. They were
0.1024 for honeypot systems, 0.0016 for genuine systems, and 0.8464 for
all systems exploited. Figure 2(a) displays the performance of the honeypot
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exploit for this condition, whereas Figures 1(b) and (c) display the real system
exploits and the total number of exploits.

Bus 40

The MSE with ACT-R parameters for the “Bus 40” condition was low
for real systems (0.0016), honeypot systems (0.0576), and total exploits
(0.4096). The MSE for the total exploits decreased from 0.4096 to 0.3136
with the calibrated parameters (d = 3, 6 = 0.68), however the MSEs for
the honeypot and real systems stayed the same. Figure 2(a) compares the
honeypot exploited accuracy, while Figure 2(b) and Figure 2(c) present the
real system exploited and total systems exploited, respectively, for the Bus 40
condition.

Hybrid 500

In the “Hybrid 500” condition, with the original ACT-R parameters, the
MSE was higher for honeypot (0.1936), real (0.0144), and exploit-based
systems (1.44). The MSE values for honeypots exploited (0.16) and total
systems exploited (1.3456) decreased with calibrated parameters (d = 2.42,
o = 0.1). However, for the real system exploited, the MSE stayed constant at
0.0144. The results for the honeypot, real system, and total systems exploited
in Hybrid 500 are shown in Figure 2(a), Figure 2(b), and Figure 2(c),
respectively.

Bus 500

The model with ACT-R parameters got an MSE of 0.1024 for honeypot
systems exploited, 0.0064 for real systems exploited, and 1.44 for total
systems exploited in the “Bus 500” condition. The MSE values were not
significantly altered by the calibrated parameters (d = 2.42, ¢ = 1.84),
as the MSEs for the honeypots, real system, and total systems exploited
stayed the same. The honeypot exploited results for this condition appear in

Figure 2(a), and real system exploited and total systems exploited are shown
in Figures 2(b) and 2(c).

GPT 40 Results

Comparative Accuracy of GPT-40 and Human Participants on Total
Systems

Both GPT-40 and human participants exploited 45 systems in the “Bus 40
(Temperature = 1.5, Top-K = 4)” configuration, producing an MSE of
0.000, therefore proving perfect alignment. Additionally, in the “Hybrid
40 (Temperature = 1, Top-K = 4)” configuration, both groups exploited
25 systems once more, producing an MSE of 0.000, hence demonstrating
GPT-40’s ability to replicate human decision-making in smaller, ordered
network environments. GPT-40 exploited 32 systems in the “Bus 500
(Temperature = 1.5, Top-K = 3)” configuration, while human participants
exploited 29 systems, producing an MSE of 9.000, therefore demonstrating
GPT-40’s enhanced performance under greater exploration settings for
larger network size. GPT-40 exploited 25 systems in the “Hybrid 500
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(Temperature = 1.5, Top-K = 4)” configuration, surpassing the 19 systems
exploited by human participants, thereby producing an MSE of 36.000,
implying a larger inclination for over-exploitation in complicated hybrid
topologies (see Figure 3(a)).

With Calibrated Parameters With ACT-R parameters

Number of Honeypot Systems exploited

With Calibrated parameters

With ACT-R parameters

Number of Real systems exploited

G
C

With ACT-R parameters

MSE:1.44

Number of Total systems exploited

©
Figure 2: (a) Number of honeypots exploited by human and model. (b)

Number of real systems exploited by human and model. (c) Number
of total systems exploited by human and model.

Total System Exploits Real System Exploits

(@) (b)

Honeypot System Exploits

()

Figure 3: (a) Comparison of total system exploited by Gpt-4o0 and human participants.
(b) Comparison of real system exploited by Gpt-4o0 and human participants.
(c) Comparison of honeypot system exploited by Gpt-40 and human participants.
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Comparative Accuracy of GPT-40 and Human Participants on Real Systems
GPT-40 exploited 19 real systems in the “Bus 40 (Temperature = 1,
Top-K = 4)” configuration, roughly paralleling the 20 systems exploited
by humans, resulting in a mean squared error of 1.000. In the “Hybrid
40 (Temperature = 0.5, Top-K = 4)” configuration, both GPT-40 and
human participants exploited 12 systems, resulting in an MSE of 0.000,
thus demonstrating GPT-40’ ability to replicate human strategies under
stable configurations. GPT-40 surpassed human participants in the “Bus
500 (Temperature = 1.5, Top-K = 3)” configuration by exploiting 20
systems instead of 16, therefore producing a mean squared error (MSE) of
16.000. In the “Hybrid 500 (Temperature = 1.5, Top-K = 4)” configuration,
GPT-40 exploited 12 systems, whereas humans exploited 7, giving a mean
squared error (MSE) of 25.000, which suggests that GPT-40 adopted a
more robust exploitation strategy in complicated hybrid environments (see
Figure 3(b)).

Comparative Accuracy of GPT-40 and Human Participants on Honeypot
Systems

In the “Bus 40 (Temperature = 1.5, Top-K = 4)” configuration, GPT-40
exploited 24 honeypot systems, nearly equivalent to the 25 systems exploited
by humans, with a mean squared error of 1.000. Similarly, in the “Bus
500 (Temperature = 1.5, Top-K = 4)” configuration, GPT-40 exploited
12 honeypot systems, whereas humans exploited 13, therefore producing
an MSE of 1.000, showing GPT-40’s ability to replicate human decision-
making in honeypot configuration. Both GPT-40 and human participants
exploited 13 systems in the “Hybrid 40 (Temperature = 1.5, Top-
K = 4)” configuration, producing an MSE of 0.000 and indicating great
alignment. Similarly, in the “Hybrid 500 (Temperature = 1.5, Top-K = 3)”
configuration, both groups exploited 12 honeypot systems once more,
producing an MSE of 0.000, therefore attesting to GPT-40’s flexibility in
challenging attack scenarios (see Figure 3(c)).

Statistical Results

The mean squared error (MSE) was analyzed to compare the performance
of the IBL and GPT models. The IBL group demonstrated a lower average
MSE (M = 0.73, SD = 0.58) compared to the GPT group (M = 2.37,
SD = 3.25) likely reason for this could be the exploratory nature of GPT
models, indicating a potential advantage of the IBL model in predictive
accuracy. One-way ANOVA test revealed a statistically significant difference
in MSE between the IBL and GPT groups with F(1, 35) = 4.43, p = .043,
partial 4> = .112, which indicates a moderate group-level difference in
prediction error.

DISCUSSION AND CONCLUSION

The significance of deception strategies like honeypots in defending vital
systems from malevolent actors has long been highlighted by cybersecurity
studies (Rowe & Custy, 2007). While more recent research has added
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computational cognitive models to simulate adversarial decision-making
processes, earlier works examined how misleading strategies may misdirect
attackers and postpone intrusions (Katakwar et al., 2020). In order to
replicate human reactions in networks with different honeypot proportions,
Katakwar, Aggarwal, and Dutt (2023) created a model based on Instance-
Based Learning Theory (IBLT). By applying IBL and GPT-40 models to
cybersecurity situations with different network sizes and topologies, this
research builds on previous efforts by examining how well they function in
bus and hybrid settings.

The outcomes of the Team HackIT simulations are consistent with the
ideas of IBLT, which holds that recollection of past experiences specifically,
frequency and recency effects influences decision-making. Due to the
simpler, linear layout of smaller bus networks, which made it easier
to remember previous accomplishments, participants showed a higher
preference for attacking genuine systems. The hierarchical complexity of
hybrid network setups, on the other hand, increased unpredictability and
encouraged participants to engage in more exploratory activities. When
adjusted for decay (d) and noise (o), the IBL model more closely matched
human performance under all circumstances, especially when it came to
distinguishing between honeypots and real systems.

Interesting similarities between GPT-40’s performance and human
decision-making processes were found. GPT-40 demonstrated a low mean
squared error (MSE) in smaller, more organized networks, closely resembling
the attack patterns of human players. The exploratory inclinations shown
in human participants when confronted with uncertainty are mirrored in
the model’s capacity to modify its tactics via the use of Top-K sampling
and temperature modifications. In line with Pu and Faltings (2011), lower
temperatures produced more focused, exploitative tactics, while higher
temperatures encouraged more exploratory activity. But in hybrid network
settings, GPT-40 showed limits, which is in line with Zhang et al. (2023),
who pointed out that LLMs have difficulties in contexts with more structural
complexity.

These results have important ramifications for the field of human factors.
Designing more user-friendly and flexible cybersecurity training resources
may be aided by an understanding of how cognitive biases such as frequency
and recency affect the choices made by cybercriminals. The potential for
LLMs to function as dynamic elements in cyber-defense systems, automating
red teaming procedures and mimicking a wide variety of hostile strategies, is
shown by the comparative performance of GPT-40. This kind of integration
of cognitive and Al-based models promotes a more thorough, human-
centered approach to the design of cybersecurity systems.

This research only examined bus and hybrid topologies, with a fixed
honeypot fraction of 50%, despite these encouraging findings. Future
research might examine how different honeypot distributions affect human
decision-making and look at other network topologies like star or ring
topologies. Furthermore, longitudinal research that looks at attacker
behavior over lengthy stretches of time may provide further light on the
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tactical and cognitive adjustments attackers make in response to deception-
based countermeasures. By providing an alternative viewpoint on adversarial
decision-making, these models open the door to cybersecurity solutions that
are more flexible, effective, and focused on people.
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