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ABSTRACT

Assessing and communicating software security has become a crucial concern
in the era of digital transformation. As software systems grow more complex
and interconnected, it becomes increasingly challenging to effectively evaluate
and communicate a product’s security status to both technical and non-technical
stakeholders. The Software Product Health Assistant (SPHA) is designed to
automatically collect and aggregate data from existing expert tools and derive,
among other scores, a transparent Security Score. SPHA is designed to present and
explain this Security Score to decision-makers to support their responsibilities. In this
paper, we demonstrate how to integrate data from SMARAGD (System Modeler for
Architectural Risk Assessment and Guidance on Defenses), a safety-informed threat
modeling tool, into SPHA to enhance the existing definition of its Security Score. To
achieve this, we combine information about known vulnerabilities with architectural
and threat data to calculate a realistic risk score for the product in question.
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INTRODUCTION

Building secure, resilient, high-quality software is essential to staying
competitive in today’s digital product landscape. However, due to software
systems’ rising complexity and interconnectivity, it is becoming increasingly
difficult to assess and communicate how well a given product fulfills these
requirements (Pfleeger and Cunningham, 2010). This issue persists even in
cases in which much analyzable data about the product and its development
process is already available. For most companies, the central challenge is
not the lack of information but extracting what is relevant and how to
use it to secure and improve their products. To address this challenge, we
developed the Software Product Health Assistant (SPHA), a fully automated
approach to measuring a product’s software health score based on existing
information from the product’s code and development process. SPHA’s
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unique combination of diverse data sources provides a comprehensive
view of a product’s current state that can easily be communicated to
various stakeholders, including those who may not have a technical
background. By aggregating data into clear and understandable scores, SPHA
empowers decision-makers to make informed choices regarding product
development and risk management. Additionally, we support product teams
in implementing these decisions by allowing them to delve into SPHA’s metric
calculations, understand the specifics behind each score, and connect them
to the original tool results to address potential issues effectively. However,
until now, SPHA does not consider any security metrics on an architectural
level. As many security-critical issues arise from a product’s architecture
(McGraw, 2004), this poses a large blind spot. The main challenge is to
automatically extract and assess the information from architecture models
produced during the requirements elicitation and design phases of the
software development process. Currently, established tools do not provide an
easily exportable assessment of a system’s security based on its architectural
design. To overcome this challenge, we combine SPHA with the results of the
System Modeler for Architectural Risk Assessment and Guidance on Defenses
(SMARAGD) tool, a novel safety-informed threat modeling tool that analyses
a given architecture to identify safety-critical threats, recommends suitable
security controls, evaluates whether secure design principles like defense in
depth are applied, and more.

In this paper, we show how to integrate the output of SMARAGD into
SPHA’s metric hierarchy to evaluate a product’s cyber resilience, resulting
in a more complete picture of a product’s overall security. In the following
section, we give a detailed introduction to SPHA and explain how different
information can be combined to derive a concise Security Score. Afterwards,
we introduce SMARAGD and the architecture and threat related metrics
that it generates. Lastly, we present our core contribution, the combination
of vulnerability information and architectural information about security
controls to derive a realistic Architecture Security Score.

SOFTWARE PRODUCT HEALTH ASSISTANT

The Software Product Health Assistant (SPHA) (Strüwer et al., 2024)
addresses the challenge of automatically quantifying and communicating a
product’s software health score to stakeholders. This health score is based
on six key aspects to assess a product: Security, Internal Quality, External
Quality, Sustainability, Compliance, and Traceability. In this paper, we focus
on security-related metrics.

Assessing and communicating a product’s current state regarding security,
particularly its risk level, is crucial for making informed decisions about
the product’s development and prioritizing tasks. These decisions are often
made by non-technical stakeholders, such as Product Owners (POs) or
Product Managers (PMs). Therefore, it is essential to present the necessary
information in a way that is understandable for their roles (Pfleeger and
Cunningham, 2010). However, most security tools are designed for use by
security experts. For instance, Static Application Security Testing (SAST)
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tools are commonly used to identify security issues in a product. The output
and visualization from these tools typically target developers and are intended
to guide them in fixing detected security vulnerabilities.

In contrast, SPHA aims to use these expert tools alongside other data
sources to evaluate a product’s overall security state and communicate it
to decision makers. Therefore, it uses a weighted hierarchy to aggregate
information into a single score with an explanation attached to explain
the semantics of its aggregation. The hierarchy is customizable for each
organization or product by modifying the hierarchical structure or the
weights assigned to the connections between edges (Wohlers et al., 2022).
SPHA’s goal is to provide an easy-to-understand and communicate, high-
level overview of the product’s state, not a complete or precise definition
of security.

In the following, we introduce a simplified example of data sources
and tools and provide an exemplary hierarchy of metrics to measure
a product’s security, demonstrating how to combine information from
different sources. Our example focuses on two key areas of software
security: code integrity and vulnerability management. Code integrity refers
to the assurance that the code has not been tampered with or altered by
an unauthorized individual. Evaluating code integrity can be challenging,
particularly for larger projects that receive hundreds of commits daily
from numerous contributors. Vulnerability management is the process of
continuously identifying, assessing, and fixing vulnerabilities. A vulnerability
is a security-relevant defect in the software that an attacker can potentially
exploit to compromise the system. A common method to rate their severity
is the Common Vulnerability Scoring System (CVSS) (NIST, 2024), which
assigns a score between 0.0 and 10.0 to each vulnerability. For developers,
the main challenge in vulnerability management is determining how to
prioritize findings and deciding which vulnerabilities to fix and which ones
are false positives. On the other hand, decision-makers must understand
the broader implications of these vulnerabilities for their product. They do
not require the detailed information provided by vulnerability scanners that
explain how to fix an issue; instead, they need a higher-level explanation
of the severity and impact of the vulnerabilities in the context of their
product.

To calculate a Code Integrity Score and Vulnerability Risk Score, we rely
on three data sources: version control systems (VCSs), vulnerability scanners,
and exploit databases. VCSs are used to manage a product’s code and other
artifacts. Vulnerability scanners provide data about known vulnerabilities
in the product Vulnerability scanners can work on different artifacts, e.g.,
the code base, dependencies, or container images. Exploit databases contain
data about known exploits for vulnerabilities. The hierarchy of metrics,
depicted in Figure 1, allows the determination of product security by
aggregating and combining information from the data sources mentioned
above. The individual components of the hierarchy are explained in the
following.
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Figure 1: Exemplary Hierarchy of metrics to evaluate a product’s security.

Based on information from a version control system, we define a hierarchy
of metrics to quantify code integrity as the Code Integrity Score. The
underlying Integrity Setting Scores check for a fact and return 1 if the fact is
true or else 0. The Integrity Ratios represent a percentage share of a specific
variable in relation to the total number of variables. In the following, all
metrics related to the Code Integrity Score are briefly introduced:

• The Branch Protection Setting Score checks if the repository’s default
branch is protected or if anybody can commit changes to it.

• The Peer Review Setting Score checks if and how many peer reviews are
required before integrating changes into the default branch.

• The Signed Commits Setting Score checks if signed commits are enforced.
• The Branch Protection Ratio determines the share of commits originating

from pull requests of all commits on the default branch.
• The Peer Review Ratio determines the share of pull requests that had the

required number of reviews in all pull requests.
• The Signed Commits Ratio determines the share of signed commits in all

commits.

The Code Integrity Score is determined based on the Integrity Setting
Scores and the Integrity Ratios according to the following formula: avg(0.3×
avg

(
∀Integrity Setting Scores

)
, 0.7× avg(∀Integrity Scores)).

This Code Integrity Score definition is based on two key components:
the product’s settings, which outline the planned process, and data from the
development process that verify adherence to this defined process. Decision-
makers need to understand whether an appropriate process is configured for
their products and whether that process is being followed. However, we do
not advocate for blind adherence to the process; it is crucial to understand
the reasons behind any deviations from it. SPHA’s hierarchical approach
allows for a detailed analysis of the underlying data, enabling developers to
investigate instances where processes were not followed. This investigation
can reveal potential issues in how the development process is defined. An
implementation of the Code Integrity Score can be found in our open-source
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repository on GitHub1. In real-world scenarios, this score can be further
enhanced and integrated with other metrics, such as a Supply Chain Integrity
Score, to provide insights into the integrity of the deployed product.

The information provided by vulnerability scanners and exploit databases
are combined to the Vulnerability Risk Score. This score combines the
Highest Vulnerability Score and the Exploitability Score and is meant to
support vulnerability management and the related decision making.

The Highest Vulnerability Score determines the most severe vulnerability
of the product among all its known vulnerabilities. It is determined by
the vulnerability with the highest CVSS score, regardless of whether any
exploits currently exist or not. This approach is taken because a high-severity
vulnerability has the potential to cause significant damage if exploited, and
therefore, it should be addressed promptly. The Highest Vulnerability Score
is calculated according to this formula: max∀ vulnerabilities (CVSS Score× 10).

The Exploitability Score analyzes information about vulnerabilities and
known exploits for these vulnerabilities. It considers all known vulnerabilities
that have corresponding exploits and aggregates their CVSS scores. This way,
it acknowledges that through vulnerability chaining, multiple low-severity
vulnerabilities can collectively impact the overall system significantly. The
Exploitability Score is calculated, according to the following formula:

min
((∑

∀ vulnerabilities ∩ exploits
CVSS Score× 10

)
, 100

)
∈ [0, 100]

The Vulnerability Risk Score indicates the risk level of a product based
on known vulnerabilities and their associated exploits. To do so, it simply
propagates the higher value of the two inputs Highest Vulnerability Score
and Exploitability Score to prevent the maximum existing risk from being
blurred. Decision-makers can use the Vulnerability Risk Score as well as the
underlying scores to prioritize product development. In our example, we have
chosen two easy to grasp approaches to CVSS aggregation and scoring. Those
can be improved or replaced by choosing more complex alternatives from
literature (Cheng et al., 2012) (Tripathi and Singh, 2011).

Finally, the hierarchy of metrics culminates in the Security Score, which
aggregates the Code Integrity Score and Vulnerability Risk Score. This score
can easily communicate the product’s current security state. It is determined
as the average of the two inputs but could be adjusted using weights.

The hierarchical structure of the information provided by the metrics
allows users to explore the Security Score and its underlying metrics in detail,
helping them understand the reasons behind the score up to initial data
sources. Users can utilize these results as a guide to address the reported
issues. However, the current definitions do not account for the system
architecture of the analyzed product. This architectural information can
be incorporated by integrating SMARAGD, as explained in the following
sections.

1https://github.com/fraunhofer-iem/SPHA-Code-Integrity

https://github.com/fraunhofer-iem/SPHA-Code-Integrity
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SYSTEM MODELER FOR ARCHITECTURAL RISK ASSESSMENT AND
GUIDANCE ON DEFENSES

S-CUBE is a publicly funded research project that was conducted at
Fraunhofer IEM. Its goal is to develop software tooling that supports
the creation of safety and security documentation for safety-critical
systems (SCS), e.g., automotive systems or industrial control systems, by
automatically deriving assurance cases from the results of a safety-informed
threat modeling process.

The result of the project is the System Modeler for Architectural Risk
Assessment and Guidance on Defenses (SMARAGD), a model-based data
flow diagram (DFD) editor for threat modeling (Shostack, 2014) of
SCS, following the STRIDE methodology (Kohnfelder and Garg, 1999).
SMARAGD provides suggestions for suitable security controls and their
possible deployment locations in the modeled architecture. Security controls
(e.g.,Message Signature Checks, Input Validation, Firewalls,…) are measures
implemented to protect information systems from threats and vulnerabilities.
They are derived from calculated attack and failure propagation information.
Security controls help to ensure the confidentiality, integrity, and availability
of information.

In addition, SMARAGD can assess the modeled system design using an
extensible catalog of architectural security metrics. A particular concern of
these metrics is to determine whether the Defense in Depth secure design
principle is considered in the system design. Defense in Depth aims to employ
multiple layers of security controls and measures to protect the system,
ensuring that if one layer fails, others remain in place to mitigate risks.

After evaluating all metrics, SMARAGD generates model-based assurance
cases in the Goal Structuring Notation (GSN) (Kelly and Weaver, 2004), by
combining each metric that fulfills the corresponding requirements with a
corresponding GSN assurance case fragment.

Figure 2 depicts the diagram view of SMARAGD showing a threat
model for an exemplary system from the automotive domain in the DFD
notation. DFD elements, e.g., Processes and External Actors of the system,
are represented by white circles and rectangles. SMARAGD further allows
to annotate Assets (depicted in blue), Threats (red), and existing Security
Controls (green) from a predefined, extensible control catalog to the DFD
nodes. The DFD nodes are connected via corresponding data flows, showing
how these elements exchange messages. Not visible in the figure but
included in the underlying model are the messages associated with these
data flows including their dependencies, as well as corresponding Failure
Modes (e.g., value failures or the omission of a message) for those messages,
and Hazards (which are automatically derived from the annotated assets).
As a background task during design, SMARAGD automatically handles
the generation and linking of failure modes based on modeled message
dependencies. Additionally, depending on their STRIDE category, annotated
threats are automatically matched to corresponding failure modes they
may cause (Fockel et al., 2022). Finally, the calculated attack and failure
propagation paths end when they reach a hazard.
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Figure 2: SMARAGD’s data flow diagram editor.

Based on the modeled system and the calculated attack and failure
propagation paths, SMARAGD can calculate different security metrics. For
this, SMARAGD provides an extensible rule-based assessment mechanism.
Figure 3 shows the corresponding (live updating) assessment view with six
exemplary rules for the modeled system. Entries shown in red represent
unsatisfied rules, green entries represent rules, which were evaluated
positively on the modeled architecture. The exemplary rule catalog is divided
into three categories. The Threat Modeling category (cf. first three list items
in the assessment view) contains base-line rules that rate the progress of the
threat modeling process. These rules, for example, evaluate if threats have
been identified at all, or if any controls have already been applied.

Figure 3: Assessment view.

The second category is Mitigations. It contains rules that evaluate in how
far threats have or have not been mitigated by appropriate security controls.
For this, SMARAGD uses its calculated attack and failure propagation paths
which indicate if an annotated threat can cause failures that lead to a hazard.
To mitigate these safety-critical threats, suitable security controls must be
implemented. SMARAGD differentiates between controls that mitigate a
threat directly, i.e., prevent the threat from occurring in the first place, and
controls that mitigate the effects of threats by preventing the propagation
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of failures. For example, in our sample system shown in Figure 2, there is
no control in place that prevents the annotated Man-in-the-Middle (MitM)
threat directly (e.g., an integrity-protecting message channel). Therefore, the
associated rule is unsatisfied, and the corresponding list item is shown in
red. The information about which controls can prevent a threat directly or,
instead, influence the failure propagation, and where these controls need to
be placed, is stored in the security control catalog.

The third category is Defense in Depth, which concerns security at the
overall system level. The corresponding rule measures whethermultiple layers
of defense (i.e., independent controls) are present in the system architecture
by determining for each threat how many controls an attacker must overcome
to achieve their attack goal (e.g., to cause a hazard). Consequently, the rule
assesses the extent to which the system implements the defense in depth secure
design principle. The attack path with the fewest controls determines the
number of defensive layers for the entire system. A control mitigates the
threat if it either prevents the threat directly or is located along the attack
and failure propagation path and prevents the failures caused by the threat
from propagating and reaching the hazard.

In conclusion, SMARAGD enables system architects to assess security at
the architectural level during the design phase, so that appropriate measures
can be taken at an early stage. Despite its primary focus on security for
safety-critical systems, SMARAGD can also be used for threat modeling of
generic software systems. Since message failures caused by attacks also occur
in non-safety-critical systems, the failure propagation paths calculated by
SMARAGD can likewise be used to calculate the effects of threats on assets
instead of hazards without the need for major adjustments to the concept.
However, until now, the assessment view is only present in SMARAGD itself.
For a holistic security assessment that also considers code-centric metrics,
etc., a connection to integration systems like SPHA is needed.

INTEGRATING ARCHITECTURAL RISK ANALYSIS OF SMARAGD
INTO SPHA

Until now, none of SPHA’s metrics have taken information about a product’s
architecture, data flow, or possible threats into account. This means that
the product’s security is assessed without considering the context of its
architecture, leading to an imprecise security assessment.

In this chapter, we explore the combination of SPHA’s existing security
metrics with architectural and threat information to improve the risk
assessment of products. Therefore, we first integrate the information directly
calculated by SMARAGD. Those describe the product’s threat resilience
from an architectural perspective while considering threats and planned
security controls. Secondly, we combine SMARAGD’s information with
information about known vulnerabilities to calculate a risk factor for security
controls to fail due to vulnerabilities. This combination addresses the
requirement formulated by Bodden et al. that “Any sensible threat modeling
must �assume breach� […]” (Bodden et al., 2024, p. 70) while also
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adding context to the known vulnerabilities to improve their prioritization
(Frühwirth and Männistö, 2009).

First, we use SMARAGD’s information about mitigated threats and
defense in depth layers to assess the product’s planned threat resilience.
Therefore, we define three metrics: the Directly Mitigated Threats Ratio
(DMTR), the Indirectly Mitigated Threats Ratio (IMTR), and the Defense
in Depth Fulfillment Score (DDFS).
DMTR and IMTR determine the share of threats directly or indirectly

mitigated by security controls in all modeled threats. Both mitigation metrics
indicate the threat model’s current state and completeness by verifying if a
mitigation is planned for all identified threats. The goal is to mitigate all
threats directly or indirectly.
DDFS measures how well the threat model meets the specified defense in

depth target (d). It defines the required number of security controls along a
critical path that must be present to fulfill the defense in depth requirement. In
a general threat model, a critical path is a connection from a threat to an asset.
DDFS combines information about direct and indirect threat mitigations
through security controls for each critical path within the threat model. The
defense in depth target defines how many defensive layers are required for
the system to be considered secure. DDFS can be calculated according to the
following formula:

min
∀ Critical Paths

(∑
∀Security Control 1

)
d

, d ∈ N1

DMTR, IMTR, and DDFS are combined to the Architectural Threat
Resilience Score that summarizes the overall resilience of the system, if
implemented according to the model. It is computed according to the
following formula: avg(0.4 × DMTR, 0.3 × IMTR, 0.3 × DDFS) that
evaluates to a score between 0 and 100. The metric weights the mitigation
of threats (sum of DMTR and IMTR) higher than the fulfillment of the
defense in depth design principle (DDFS), as it must first be ensured that
each individual threat is mitigated.

Secondly, we use the information about known vulnerabilities to add
additional context to the information provided by the threat model. As
outlined in the description of SPHA’s Vulnerability Risk Score, it is important
to judge the risk associated with each vulnerability correctly, or in the context
of the threat model, to each threat and its related security controls, to
make correct decisions about the product’s development. SMARAGD’s threat
model and the modeled security controls represent an ideal solution in which
a security control fully mitigates a threat. In other words, it introduces a
binary value: if a security control is assigned to a threat, it is mitigated (1) or
not (0).

Using SPHA, we refine this binary value by using information about known
vulnerabilities to derive a continuous score. The resulting Security Control
Risk Score communicates the risk that the security control fails due to a
vulnerability detected in its implementation or one of its dependencies. It
is based on the total number of known vulnerabilities in a security control
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VSC and is calculated individually for each security control. Its calculation
is based on the Vulnerability Risk Score introduced in the section Software
Product Health Assistant according to the following formula:

1 -
Vulnerability Risk Score (VSC)

100
∈ [0, 1]

The Security Control Risk Score can further be used to improve the
Defense in Depth Fulfillment Score. Instead of using the number of planned
security controls mitigating a threat (directly or indirectly), we can use the
Security Control Risk Score to consider inherent vulnerabilities within the
individual security controls. The resulting Defense in Depth Risk Score for a
given defense in depth target (d) scan be calculated according to this formula:

min
∀ Critical Paths

(
∑
∀Security Control Security Control Risk Score)

d
, d ∈ N1

Finally, the overarching Architecture Vulnerability Score combines the
Architectural Threat Resilience Score (ATRS) with the Defense in Depth Risk
Score (DDRS) to reflect the impact of vulnerabilities on the planned threat
mitigation practices. Thus, it becomes apparent when existing vulnerabilities
undermine the originally planned security controls, and there is a need for
improvement, either by adding further security controls or by eliminating
existing vulnerabilities. We suggest using a weighted average for the
calculation of the Architecture Vulnerability Score with weights according to
the following formula: avg(0.3×ATRS, 0.7×DDRS). The weights emphasize
the immediate need to address known vulnerabilities within the system’s
security controls, while still taking the target architecture into account. Lastly,
we integrate the Architecture Vulnerability Score in SPHA’s Security Score.

The metrics and definitions presented in this chapter are representative
examples that highlight the benefits of combining SMARAGD and SPHA.
They are not meant to be an exhaustive list of all beneficial metrics.

CONCLUSION

In conclusion, integrating SPHA and SMARAGD provides an automated
method for assessing and communicating software security to various
stakeholders. By consolidating data into a clear Architecture Vulnerability
Score, decision-makers are better positioned to make informed choices
regarding product development and risk management. This combination of
architectural threat analysis and code vulnerability information improves the
evaluation of a product’s security and related risks, making the information
from SMARAGD accessible to non-technical stakeholders. Nonetheless,
further work is needed to refine the integration of SMARAGD with SPHA
and to expand the list of metrics. Additionally, we plan to investigate the
possibility of feeding information from SPHA back into SMARAGD to
enhance the workflow for SMARAGD users.
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