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ABSTRACT

To support data collection for dynamic human reliability analysis (HRA), this study
investigates time distributions for task primitives defined in the Goals, Operators,
Methods, and Selection rules (GOMS)–Human Reliability Analysis (HRA) method and
Human Reliability data EXtraction (HuREX). GOMS-HRA was developed to provide
cognition-based time and human error probability (HEP) information for dynamic HRA
calculations within the Human Unimodel for Nuclear Technology to Enhance Reliability
(HUNTER) framework, while HuREX is a comprehensive HRA data collection method
developed by the Korea Atomic Energy Research Institute (KAERI). In this paper, we
examine time distributions by using experimental data collected from the Simplified
Human Error Experimental Program (SHEEP) study, which proposes an HRA data
collection framework to complement full-scope simulator research and gather input
data for dynamic HRA by using simplified simulators such as the Rancor Microworld
simulator. This paper investigates whether the time required for GOMS-HRA and
HuREX task primitives fits 13 statistical distributions. Additionally, we compare and
discuss the time distributions obtained from both student operators and professional
operators. The result was that this study identified several time distributions for five
GOMS-HRA and four HuREX task primitives. In the future, the results of this study are
expected to provide objective reference data on the elapsed time for task primitives
and aid in realistically simulating scenarios within dynamic HRA.

Keywords:Nuclear power plant, Human reliability analysis, Dynamic human reliability analysis,
Hunter, GOMS-HRA

INTRODUCTION

Human reliability analysis (HRA) is an approach used to evaluate human
errors and quantify human error probabilities (HEPs) for application in
probabilistic risk assessment (PRA) (Swain & Guttmann, 1983). The Risk-
Informed System Analysis (RISA) pathway under the U.S. Department
of Energy’s Light Water Reactor Sustainability (LWRS) Program sponsors
several HRA-related projects aimed at creating better tools to support
industry risk assessment needs. One such tool is the Human Unimodel for
Nuclear Technology to Enhance Reliability (HUNTER) project (Boring et al.,
2022). HUNTER is a framework designed to support the dynamic modeling
of human error in conjunction with other modeling tools. It creates a virtual
operator, or potentially a human digital twin, as a counterpart to plant
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hardware modeling and simulation. The name HUNTER is intended as a
counterpart to various animal-named modeling tools developed at Idaho
National Laboratory (INL), such as the Risk Analysis Virtual Environment
(RAVEN) and the Multiphysics Object-Oriented Simulation Environment
(MOOSE). These tool names playfully combine to become tools such as
RAVEN-HUNTER or MOOSE-HUNTER.

Our research team has developed an HRA data collection framework
called the Simplified Human Error Experimental Program (SHEEP) to
complement full-scope simulator studies and collect input data for dynamic
HRA tools such asHUNTER (Park et al., 2022). The SHEEP framework aims
to infer full-scope data based on experimental data collected from simplified
simulators—specifically the Rancor Microworld Simulator (Rancor) and the
Compact Nuclear Simulator (CNS). Within the SHEEP framework, our
research team has experimentally collected human reliability data from 36
student operators and 36 professional operators using CNS and Rancor.
The human errors and performance measurements collected from these
experiments have been analyzed and discussed in previous research (Park
et al., 2022; Park et al., 2023).

Within the umbrella of the SHEEP framework, this study aims to
investigate time distributions for task primitives defined in the Goals,
Operators, Methods, and Selection rules (GOMS)-HRA (Boring &
Rasmussen, 2016) and Human Reliability data Extraction (HuREX) (Jung,
Park, Kim, Choi, & Kim, 2020) methods. GOMS-HRA was developed
to provide cognition-based time and HEP information for dynamic HRA
calculations within the HUNTER framework, while HuREX was developed
to generate HRA data (e.g., HEPs) by collecting and analyzing human
performance data collected from a simulator.

In this study, we investigated time distributions for GOMS-HRA and
HuREX task primitives by using the SHEEP database, which includes
experimental data from 20 student operators and 20 professional operators
using Rancor, and 16 student operators and 16 professional operators
using CNS. From the experimental data, we investigated whether the time
required for GOMS-HRA and HuREX task primitives satisfies 13 statistical
distributions. We then compared and discussed the time distributions
obtained from the student operators and professional operators.

GOMS-HRA AND HuREX TASK PRIMITIVES

GOMS-HRA was developed to provide cognition-based time and HEP
information for dynamic HRA calculations within the HUNTER framework.
It has been used to model proceduralized activities and evaluate user
interactions with human-computer interfaces in human factors research.
As a predictive method, GOMS-HRA is well-equipped to simulate human
actions under specific circumstances in a given scenario. The basic approach
of GOMS-HRA consists of three steps: (1) breaking down human actions
into a series of task-level primitives, (2) allocating time and error values
to each task-level primitive, and (3) predicting human actions or task
durations.

Table 1 shows the GOMS-HRA task primitives. GOMS-HRA originally
suggested 12 task primitives performed in control rooms and in the field.



14 Yang et al.

However, in this study, we focus on the five task primitives (i.e., AC, CC,
RC, SC, and DP) highlighted in grey in the table. The SHEEP experiment
concentrated on control room data, with a single operator running a
simulator by attempting to apply the appropriate procedures. Consequently,
task primitives related to field operations (i.e., AF, CF, RF, and SF),
decision-making without procedures (i.e., DW), and communication between
operators (i.e., IP and IR) were excluded from this study.

Table 1: GOMS-HRA task primitives.

Task Primitives Description

AC Performing required physical actions on the control boards
AF Performing required physical actions in the field
CC Looking for required information on the control boards
CF Looking for required information in the field
RC Obtaining required information on the control boards
RF Obtaining required information in the field
IP Producing verbal or written instructions
IR Receiving verbal or written instructions
SC Selecting or setting a value on the control boards
SF Selecting or setting a value in the field
DP Making a decision based on procedures
DW Making a decision without available procedures

HuREX was developed to generate HRA data such as HEPs by collecting
and analyzing human performance data from a simulator. HuREX has been
used to provide HRA data to new HRA methods such as the Empirical data-
Based crew Reliability Assessment and Cognitive Error analysis (EMBRACE)
or to estimate the impact of performance-shaping factors (PSFs) on HEPs.
As a data collection framework, HuREX is comprised of four steps:
(1) preparation, such as experiment design; (2) data collection through
simulator experiments; (3) data analysis; and (4) data reporting.

Table 2: HuREX cognitive activities.

Cognitive activity Description

Information gathering and
reporting (IG)

Checking discrete state or measuring parameter

Response planning and
instruction (RP)

Entering/transferring procedure or step in
procedure, or directing information gathering,
manipulation, notification/request

Situation interpreting (SI) Diagnosing or predicting of situation, or
identifying overall status

Execution (EX) Discrete/continuous control or dynamic
manipulation, or notifying/requesting to MCR
outside

Others (OT) Unguided response planning, instruction,
manipulation
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Table 2 shows the HuREX cognitive activities. In this paper, these are
treated as task primitives corresponding to GOMS-HRA. HuREX originally
defines five cognitive activities; however, “Others” is not considered in this
paper because it is not included in the human cognitive process. Additionally,
HuREX suggests generic task types, which are detailed for each cognitive
activity, but this paper does not use them due to the insufficient amount of
data available for detailed analysis.

THE SHEEP EXPERIMENT DATA

The SHEEP data were collected from 20 student operators and
20 professional operators using Rancor, and from 16 student operators and
16 professional operators using CNS. Most of the professional operators
were licensed reactor operators currently employed at nuclear power plants
(NPPs). They were all operators on shift (i.e., shift supervisor, shift technical
advisor, reactor operator, or turbine operator) or instructors at the training
center. The student operators were undergraduate seniors or graduate
students from the Department of Nuclear Engineering at Chosun University.
They were knowledgeable about NPP systems and operations, having already
completed a significant portion of their coursework, which included courses
such as “Introduction to Nuclear Engineering,” “Reactor Theory,” “Reactor
Control,” and “Simulator Operation.”

This study investigated the time distributions of GOMS-HRA and HuREX
task primitives in relation to different scenarios. For example, normal
scenarios aim to reach different stable operating modes such as startup
or hot standby, while abnormal or emergency scenarios primarily consist
of instructions for rapidly cooling down reactors. Accordingly, this study
differentiated ten different Rancor scenarios and four CNS scenarios, as
shown in Table 3. In this paper, the results of the time distribution analysis for
the SteamGenerator Tube Rupture (SGTR) scenario are primarily introduced
in the following sections.

Table 3: Scenario information in the SHEEP experiment.

Scenario Type Rancor CNS

Normal • Fully auto startup
• Shutdown
• Startup with manual rod

control
• Startup with manual feedwater

control

• Startup (2% to
50%)

• Shutdown (100%
to hot-standby)

Continued
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Table 3: Continued

Scenario Type Rancor CNS

Abnormal or
Emergency

• Failure of an RCP under
full-power operation

• Failure of a control rod under
full-power operation

• Failure of a feedwater pump
under full-power operation

• Abnormal turbine trip under
full-power operation

• Steam generator tube rupture
(SGTR)

• Loss of feedwater pump
(LOFW)

• SGTR
• LOFW

TIME DISTRIBUTION ANALYSIS RESULTS: SGTR

Tabel 4 shows the number of tasks used for time distribution analysis on
the elapsed time of the five GOMS-HRA and four HuREX task primitives
in the SGTR scenario for each simulator, depending on participant type
(i.e., student operators or professional operators). There were 490 total
tasks counted when 20 student operators and 20 professional operators
manipulated Rancor, and 842 total tasks when 16 student operators and
16 professional operators manipulated CNS.The number of tasks for student
operators (248) was slightly higher than for professional operators (242)
when using Rancor. In contrast, when using CNS, the number of tasks for
student operators (380) was lower than for professional operators (462).

The differences in the number of tasks per participant type stem from cases
in which a participant additionally performs instructions that can be omitted
within a procedural context, or in which a participant cannot continue with
a scenario because the reactor has abnormally tripped during that scenario.

Table 4: Number of tasks used for time distribution analysis (SGTR).

Simulator
Type

GOMS-HRA Task Primitive Number of Tasks
per Participant
Type

Total
Number
of TasksParticipant Type AC CC RC SC DP

Rancor Student
operators

59 80 49 10 50 248 490

Professional
operators

57 78 49 10 48 242

HuREX Task Primitive Number of Tasks
per Participant
TypeParticipant Type IG RP SI EX

Student
operators

129 50 N/A 69 248

Professional
operators

127 48 N/A 67 242

CNS GOMS-HRA Task Primitive Number of Tasks
per Participant
Type

Total
Number
of TasksParticipant Type AC CC RC SC DP

Student
operators

123 170 6 38 43 380 842

Professional
operators

151 192 10 58 51 462

Continued
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Table 4: Continued

HuREX Task Primitive Number of Tasks
per Participant
TypeParticipant Type IG RP SI EX

Student
operators

175 43 15 147 380

Professional
operators

202 51 15 194 462

Table 5: Number of time distributions with p>0.05 for task primitives, depending on
simulator type, method, and participant type.

Methods Student Operator

Rancor GOMS-HRA AC CC RC SC DP AC CC RC SC DP
5 0 0 9 3 6 0 0 9 0

HuREX IG RP SI EX IG RP SI EX
0 3 N/A 5 0 0 N/A 6

CNS GOMS-HRA AC CC RC SC DP AC CC RC SC DP
3 4 12 4 2 3 4 12 5 0

HuREX IG RP SI EX IG RP SI EX
2 2 10 4 1 0 10 3

Table 6: Time distribution analysis on the five GOMS-HRA task primitives during
the SGTR when using Rancor, depending on participant type (student vs.
operator).

Distribution P-value of Goodness of Fit Test

Student Operator

AC CC RC SC DP AC CC RC SC DP

Normal <0.005 <0.005 <0.005 0.014 <0.005 <0.005 <0.005 <0.005 0.237 <0.005
Normal
(Box-Cox
transformation)

0.374 <0.005 0.010 0.653 0.070 0.340 <0.005 <0.005 0.237 0.041

Lognormal 0.374 <0.005 0.010 0.404 0.070 0.340 <0.005 <0.005 0.031 0.041
Exponential 0.023 <0.003 0.018 0.486 0.051 <0.003 <0.003 <0.003 0.021 <0.003
2-parameter
exponential

0.083 <0.010 <0.010 >0.250 0.011 <0.010 <0.010 <0.010 0.012 0.034

Weibull <0.010 <0.010 <0.010 0.189 <0.010 0.015 <0.010 <0.010 0.236 0.022
3-parameter
Weibull

0.013 <0.005 <0.005 0.404 <0.005 0.084 <0.005 <0.005 0.254 0.006

Smallest
extreme
value

<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 0.092 <0.010

Largest
extreme
value

<0.010 <0.010 <0.010 0.037 <0.010 0.088 <0.010 <0.010 0.227 0.016

Gamma <0.005 <0.005 0.007 0.208 0.006 0.167 <0.005 <0.005 0.182 0.047
Logistic <0.005 <0.005 <0.005 0.016 <0.005 <0.005 <0.005 <0.005 0.235 <0.005
Loglogistic >0.250 <0.005 <0.005 >0.250 0.032 0.233 <0.005 <0.005 0.104 0.017
Normal (after
Johnson
transformation)

0.563 N/A N/A 0.763 N/A 0.364 N/A N/A N/A N/A

Table 5 shows the number of cases in which the time required for each
task primitive followed specific time distributions. The numbers within the
table represent the number of distributions for which the goodness-of-fit
test resulted in a p-value > 0.05 during the SGTR scenario. Table 6 then
provides an example of time distribution analysis for the GOMS-HRA task
primitives when using Rancor. For statistical distributions and goodness of
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fit, p-values over 0.05 (i.e., p>0.05) indicate insufficient evidence to reject the
null hypothesis that the data follow the hypothesized distribution. This does
not prove that the sample data follow the specified distribution, but instead
provides statistical evidence that the distribution fits the data.

As shown in Tables 5 and 6, the AC task primitive for student
operators satisfied five distributions (p>0.05): normal distribution after
Box-Cox transformation, lognormal distribution, 2-parameter exponential
distribution, loglogistic distribution, and normal distribution after Johnson
transformation. Figure 1 shows one of the distributions representing the
highest p-value (0.563). It includes a normal distribution (after Johnson
transformation) for student operator tasks in the SGTR scenario. The average
elapsed time from the time distributions is 11.92 seconds for AC.

Figure 1: Normal distribution (after Johnson transformation) of AC for student operator
tasks in the SGTR scenario with rancor.

DISCUSSION & CONCLUSION

This study investigated time distributions for the five GOMS-HRA and
four HuREX task primitives. The result was that several time distributions
for the task primitives were found to have p-values of over 0.05 (i.e.,
p-value > 0.05). Specifically, a greater number of time distributions was
found in the CNS experiment than in the Rancor experiment. When
using Rancor, manipulation-related task primitives such as AC (performing
required physical actions on the control boards) and SC (selecting or setting
a value on the control boards) in GOMS-HRA, as well as execution (EX)-
related task types in HuREX (discrete or continuous control or dynamic
manipulation), satisfied a relatively large number of distributions with
p-values of over 0.05, in comparison to other task primitives.

On the other hand, in the experiment using the CNS simulator, the RC task
primitive, which pertains to information-gathering in GOMS-HRA, satisfies
a greater number of time distributions in comparison to other task primitives,
as does the SI task primitive, which pertains to diagnosis and prediction of
NPP states in HuREX.

Our research team continues to analyze the experimental data. Further
analyses will be performed to clarify these issues and develop better time



Time Distribution Analysis for Task Primitives 19

distributions applicable to dynamic HRA. Already, these data show the
potential of using task-level primitives to arrive at time distributions. Such
time distributions may eventually prove as useful as outright HEP estimations
in future HRA applications.

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any agency
thereof, nor any of their employees, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product, process,
or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the U.S. Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the U.S.
Government or any agency thereof.
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