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ABSTRACT

Accurate quantification of cognitive load is essential for optimizing human-computer
interaction systems.
Methods: This study recruited 159 healthy participants and employed a hierarchical
n-back task paradigm (0-back to 3-back) to induce graded levels of cognitive load.
Multimodal physiological signals, including electroencephalogram (EEG), heart rate
variability (HRV), and electrodermal activity (EDA), were recorded simultaneously to
construct a cognitive load dataset encompassing three modalities. Temporal and
frequency domain features were extracted from EEG signals, temporal and frequency
domain parameters from HRV signals, and phase-amplitude integration and SCR
frequency from EDA signals. A Kruskal-Wallis test was used to analyze significant
differences in physiological indices across different cognitive load levels. Finally, a
multiple linear regression model was employed to quantify the contribution of each
modality’s features to cognitive load classification.
Results: (1) A significant suppression of alpha band power in the eyes-open resting
state validated the effectiveness of the EEG signal acquisition system; (2) With
increasing task difficulty, the alpha and theta power of EEG and the LF value of HRV
showed significant monotonic increasing trends (p < 0.05), confirming the sensitivity
of multimodal physiological signals to changes in cognitive load; (3) The regression
model revealed that EEG features had the highest contribution (β = 0.57).
Conclusion: This study proposes a framework for cognitive load quantification based
on multimodal feature fusion, providing a theoretical and empirical foundation for the
development of high-precision cognitive load assessment models.
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INTRODUCTION

The rapid advancement of artificial intelligence and big data technologies
has opened new avenues for precise cognitive load assessment through
multimodal data fusion. Real-time monitoring and classification of
cognitive load hold significant implications for optimizing system design,
enhancing human-computer collaboration efficiency, and improving user
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experience across domains such as education, healthcare, and intelligent
interaction. However, feature alignment and dynamic modeling of
multisource heterogeneous data remain central challenges in current research,
necessitating interdisciplinary approaches to overcome existing barriers.
Cognitive Load (CL), as a core indicator of individual cognitive resource
allocation, holds significant research value in neuroscience, psychology,
and human-computer interaction. Sweller proposed the Cognitive Load
Theory (CLT), emphasizing the limited capacity of human working memory
(Sweller, Ayres, & Kalyuga, 2011; Sweller, van Merriënboer, & Paas, 2019).
Both excessively high and low cognitive loads can negatively impact task
performance. High cognitive load may lead to attention dispersion and
increased errors, while low cognitive load may cause fatigue and reduced
attention (Mühlbacher-Karrer et al., 2017). Therefore, accurately quantifying
cognitive load is crucial for optimizing task design and enhancing system
performance.

With the increasing complexity of technology, cognitive load assessment
has become a central issue in human-computer interaction and ergonomic
design. By quantifying users’ information processing stress, human-computer
interaction interfaces can be optimized to reduce operational error rates
and prevent health risks associated with mental fatigue (Paas et al., 2016).
For example, in driver monitoring systems (DMS), traditional vision-based
technologies and detection response tasks (DRT) are widely used to assess
drivers’ alertness and cognitive load (Biswas et al., 2016; Duchowski
et al., 2019). The widespread application of non-invasive wearable devices
also enables real-time monitoring of drivers’ states to ensure traffic safety
(Choi et al., 2017). In the aviation field, cognitive load assessment is equally
critical. Studies have shown that high cognitive load significantly prolongs
pilots’ reaction times and affects their emotional states and decision-making
behaviors (Vukovic et al., 2021). Additionally, subjective rating tools such as
NASA-TLX are widely used for multidimensional cognitive load assessment
(Toy et al., 2020). Therefore, with the prevalence of complex task scenarios,
accurately quantifying neural and physiological responses under different
cognitive load levels has become key to enhancing the adaptive design of
human-machine systems. This research direction not only helps optimize task
design but also provides safer solutions for high-risk fields such as driving,
aviation, and healthcare (Chan, 2017). Thus, the identification and study of
cognitive load hold significant theoretical and practical implications.

Cognitive load measurement can be divided into subjective self-
reports, behavioral performance measurements, and physiological and EEG
measurements. Traditional measurement methods (e.g., the NASA-TLX
scale) are widely used subjective measurement tools that assess perceived
cognitive workload in a multidimensional manner (Hart and Staveland,
1988; Park et al., 2018). However, due to subjective bias and lag, they are
not used as standalone indicators in current research. Behavioral performance
is also a common indicator and method for measuring individual cognitive
load. Tasks such as N-back, detection response tasks, Stroop tasks, and
multiple-object tracking tasks can induce different states of cognitive load
(Innes, 2021). Among these, the N-back task, first proposed by Kirchner in
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1958, dynamically and systematically increases task complexity by adjusting
the memory recall step length (n value), and is widely used to induce different
levels of cognitive load, providing controllable experimental conditions for
experiments and analyses in various environments (Pergher et al., 2019).
In recent years, research based on multimodal physiological signals such as
EEG, photoplethysmography (PPG), and electrodermal activity (EDA) has
become a new direction for exploring the neural mechanisms of cognitive
load due to its objective and continuous nature (Baig & Kavakli, 2018; Elkin
& Devabhaktuni, 2019; Hogervorst, Brouwer, & Van Erp, 2014).

Electroencephalography (EEG) is one of the most commonly used
physiological signals in cognitive load research. Extracted EEG features
usually include time-domain, frequency-domain, functional connectivity, and
nonlinear features (Xu et al., 2021; Chu et al., 2021). Band power is the most
commonly used feature in cognitive load assessment. Research has found
that EEG α (Haleh et al., 2017), θ (Radüntz, 2017; Klimesch et al., 2007;
Zhang et al., 2016) band power is closely related to cognitive load. For
example, Haleh et al. (2017) found that α - band power was significantly
reduced during high n -back tasks, indicating a high consumption of cognitive
resources. In addition, some studies have pointed out that an increase
in θ -band(4–8 Hz) power is usually associated with a high cognitive load
state. Some researchers used a six - level visual working memory task
and θ - rhythm spectral analysis to study the load. The results showed that
the strongest connection strength of θ - rhythm was distributed in the frontal
midline area, and the functional connectivity between EEG waves weakened
with cognitive overload (Klimesch et al., 2007; Zhang et al., 2016). In
addition to EEG, photoplethysmography (PPG, which reflects sympathetic
- parasympathetic balance through heart rate variability) and electrodermal
activity (EDA, which characterizes changes in skin conductance levels) have
been used to evaluate autonomic nervous activity induced by cognitive
load. Some studies have shown that during high n -back tasks, the low
- frequency/high - frequency ratio (LF/HF) of heart rate variability (HRV)
was significantly increased, indicating an intensification of sympathetic nerve
activation. At the same time, changes in EDA signals are also related to the
cognitive load experienced by individuals. The skin conductance response
(SCR) is a rapid reaction of the sympathetic nervous system to stimuli and
is usually associated with an increase in cognitive load. Research has shown
that high cognitive load tasks trigger more SCR events, and the amplitude
and frequency of SCR are significantly increased (Rahma et al., 2022). In
addition, some studies have pointed out that compared to baseline, SCL is
higher during cognitive tasks, indicating a successful induction of sympathetic
nervous responses (Ahmadi, Ozgur & Kiziltan, 2024).

Overall, indicators from EEG, PPG, and EDA can all serve as sensitive
indicators of cognitive load.However, the contribution rates of these different
indicators to cognitive load and which indicators are more robust remain to
be further determined. Therefore, this study aims to construct a framework
for quantitative assessment of cognitive load based on N-back tasks through
multimodal signal analysis. It also measures the representativeness and
contribution of feature values from different modal data to cognitive
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load, providing indicator suggestions and support for cognitive load state
identification and real-time monitoring.

METHODS

Participants

A total of 210 healthy participants were recruited, including 112 males and
98 females, with an average age of 26.28±4.89. All participants were right-
handed, with normal or corrected vision, and no history of mental illness.
Informed consent was obtained from all participants prior to the experiment.

Experimental Design and Procedure

The classic N-back task was used as a standard tool for assessing cognitive
load, including four difficulty levels: 0-back, 1-back, 2-back, and 3-back
(Aghajani et al., 2017; Pergher et al., 2019). First, a fixation point “+” was
presented at the center of the screen, followed by stimuli (white squares)
appearing in different positions, specifically at eight locations: top, bottom,
left, right, upper left, lower left, upper right, and lower right. In the 0-back
condition, participants were instructed to press the “J”key if the white square
appeared in the upper left corner and the “F” key if it appeared in any other
position. In the 1-back condition, no response was required for the first
square, but for subsequent squares, participants were to press the “J” key
if the current square’s position matched the previous one, and the “F” key
if it did not. In the 2-back condition, no response was required for the first
two squares, but for subsequent squares, participants were to press the “J”
key if the current square’s position matched the one presented two squares
prior, and the “F” key if it did not. In the 3-back condition, no response was
required for the first three squares, but for subsequent squares, participants
were to press the “J” key if the current square’s position matched the one
presented three squares prior, and the “F” key if it did not.

Figure 1: Example of a 0-back task.
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To minimize the impact of individual differences, this experiment
employed a within-subject design with a single factor and four levels. Prior
to the experiment, participants were fitted with and connected to EEG and
physiological devices. The ErgoLAB Human-Machine Synchronous Cloud
Platformwas opened to record data, ensuring that all sensors had good signal
quality. The experiment began with the collection of participants’ resting-
state data, including two minutes of eyes-open rest and two minutes of
eyes-closed rest. Participants then underwent a practice phase, where they
practiced the 0, 1, 2, and 3-back tasks. Each block contained 20 trails, with
a target-to-non-target stimulus ratio of 1:3. Each stimulus was presented
for 500 ms, followed by a 2500 ms interval before the next stimulus
was presented. Feedback on correctness or errors was provided after each
practice session. Once the task rules were mastered, the formal experiment
commenced, with each back task being performed twice in the order of 0, 1, 2,
3, 3, 2, 1, 0-back. After each task, participants were required to complete the
corresponding NASA-TLX scale cognitive load questionnaire (Wang, Zhang
&Wang, 2025). Following the experimental tasks, two additional minutes of
eyes-open resting data were collected. The specific experimental procedure is
outlined in the figure below.

Figure 2: Flowchart of the experimental procedure.

Data Collection Equipment and Materials

Experimental materials: The N-back cognitive load task was edited on the
Psychopy platform. Participants first practiced the 0, 1, 2, and 3-back tasks
and then proceeded to the formal experiment after mastering the task rules.
Each back task was performed twice, and after each task, participants were
required to complete the corresponding cognitive load questionnaire. The
cognitive load scale used was the NASA-TLX (Wang, Zhang &Wang, 2025),
which includes six questions:

Q1. Mental Demand: The amount of mental activity required to complete
the task, such as observing, remembering, thinking, and searching. Is the task
mentally easy or difficult, simple or complex for you?

Q2. Physical Demand: The amount of physical effort required to complete
the task, such as pushing, pulling, turning, or controlling movements. Is the
task physically easy or difficult for you? Do your muscles feel relaxed or
tense?

Q3. How fast or slow was your pace in completing the task? Did you feel
calm or panicked?
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Q4. How much effort did you exert in completing the task?
Q5. How satisfied are you with your performance in achieving the goals?
Q6. How much frustration or annoyance did you experience during the

task?
Experimental equipment: The experimental equipment used was the

ErgoLAB Human-Machine Environment Synchronization Platform V3.0,
which includes a real-time synchronized wearable physiological recording
system (Beijing Kingfar Technology Co., Ltd.), the ErgoLAB PPG wireless
pulse sensor (64 Hz sampling rate), the ErgoLAB EDA wireless skin
conductance sensor (64 Hz sampling rate), and the ErgoLAB hydroelectrode
EEG system (256 Hz sampling rate). Data were analyzed using the
software analysis modules of the ErgoLAB Human-Machine Environment
Synchronization Platform V3.0. The computer used had a Windows
Enterprise Edition system with a screen resolution of 1920*1080.

Figure 3: ErgoLAB hydroelectrode EEG, ErgoLAB PPG wireless Biosensor, ErgoLAB
EDA wireless Biosensor.

Experimental environment: The experiment was conducted in a separate,
quiet room with constant temperature (20-23 ◦C) and constant lighting
(approximately 40 lx), free from interference from high-power electrical
sources.

Figure 4: Photograph of the experimental setup.
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Data Quality Check

Before data analysis, the quality of the data signals was checked. From the
perspective of data integrity, manual checks were performed to ensure that
data modalities, folders, and N-back task key responses were complete. From
the perspective of data signal accuracy, checks were made to ensure that EEG
signals did not exhibit significant and prolonged high resistance during task
states, that PPG signals had clear peaks and valleys (Yang, Beh, Lo, Wu,
& Lu, 2020), and that there was no significant packet loss (≥20%) in the
multimodal data signals. Data with these issues were marked as abnormal
and manually deleted, resulting in 159 valid data entries for processing and
analysis.

Dataset Description

The dataset is available on the kingfar.cn website and includes data from
159 participants, comprising EEG, skin conductance, heart rate, NASA-TLX
scale, and demographic survey questionnaire raw data. The dataset structure
is as follows:

1. Dataset_description.json: Describes the ownership information of the
dataset.

2. readme.json: Describes the content of the cognitive load experiment
design, introducing the data collection method, label content, and other
information.

3. participants.csv: Participant information file describing the demographic
information (ID, gender) of the 159 participants.

4. participants.json: Describes the meaning of the headers in the
participants.csv file.

5. Sourcedata:

a. EEG, skin conductance, and heart rate collection device information
in the info.txt file, specifying the device names and corresponding
sampling rates.

b. Original data folders for all participants, named by record number
(001, 002, 003,..., 159). Each folder contains:

i All EEG raw data:
- Complete EEG data records, including.csv formatted EEG files with 32

channels, containing timestamps and 32-channel EEG raw values.
- Event.txt files recording segments during the process, with 7 columns:

Segment ID, Segment Name (Name), Segment Type (SegmentType),
Segment Start Timestamp (StartTime(s)), Segment End Timestamp
(EndTime(s)), Segment Duration (Duration(s)), and Recording Name
(RecordingName).

ii All skin conductance raw data.
iii All heart rate raw data:
- Complete heart rate data records in.csv format, with 2 columns:

timestamp and Value (%).



108 Zhao et al.

RESULTS AND DISCUSSION

Data Preprocessing

Data were processed using Python software. EEG signals were sampled at
256 Hz and filtered with a notch filter to remove DC components, set
at 50 Hz to eliminate powerline interference and improve signal quality.
Bandpass filtering was applied at 0.5–45 Hz to retain the main frequency
components of EEG activity. The reference was converted to the average
reference of all valid scalp electrodes using whole-brain average referencing,
which eliminates spatial bias from fixed reference electrodes and enhances
signal stability. Independent component analysis (ICA) was used to correct
artifacts such as blinking, movement, electromyography, and electrocar-
diography, with components exceeding ±100 µV considered artifacts
and removed to improve EEG signal purity (Delorme & Makeig, 2004;
Hyvärinen & Oja, 2000). PPG signals were bandpass filtered at 0.5–8 Hz
to remove low-frequency baseline drift and high-frequency noise, retaining
signals related to heart rate. Dynamic thresholding was then applied to
extract pulse wave features (peak intervals), ensuring temporal accuracy in
heart rate calculation (Yu et al., 2006). EDA signals were low-pass filtered at
a cutoff frequency of 0.6Hz to smooth rapid fluctuations in skin conductance
responses (SCR), retaining slow-phase changes related to sympathetic nerve
activity. High-frequency noise was removed, preserving effective EDA signals,
and moving averaging (with a 1-second window) was applied to enhance
the separation of tonic (baseline) and phasic (event-related) components
(Benedek & Kaernbach, 2010).

Figure 5: Technical roadmap.

Data Quality Validation

Alpha waves are a type of rhythm in EEG, typically appearing during
relaxed states with eyes closed and characterized by a frequency range of
8–12 Hz. The traditional “Berger effect” indicates that alpha wave amplitude
is suppressed (i.e., decreases) when eyes are open or cognitive load increases
(Bazanova & Vernon, 2014). Importantly, detecting alpha suppression in
EEG datasets is considered a hallmark of reliable, high-quality EEG recording
(Marini et al., 2019; Radüntz, 2018). Research has shown that alpha band
power spectral density (PSD) should dominate EEG signals during resting
states. Experiments have demonstrated that when electrode quality is good,
the alpha band PSD ratio exceeds 65%, and this ratio decreases by about
10% after electrodes dry for 30 minutes (Liu et al., 2019). Analysis of
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alpha suppression in EEG data revealed significant alpha suppression across
different channels in individuals, as shown in the figure below. Analysis of
EEG alpha suppression activity was conducted by comparing the ratio of
EEG alpha power between eyes-closed and eyes-open resting states, with a
ratio greater than 1 indicating good data quality. Results showed that after
excluding 16 participants with incomplete resting-state data, the validation
excellence rate reached 90%, as detailed in Figure 6. Additionally, Figure 7
illustrates distinct alpha blocking in different channels for a representative
participant.

Figure 6: Comparison of alpha band energy between eyes-closed and eyes-open
resting states.

Figure 7: Example of alpha suppression analysis results for a participant.

Differential Analysis

Subjective scales: The NASA-TLX scale, which includes six items, measures
cognitive load from various dimensions such asmental and physical demands,
difficulty, effort, satisfaction (reverse scored), and frustration. Themean score
was calculated as the individual’s subjective cognitive load, with higher scores
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indicating higher perceived cognitive load and vice versa. A one-way ANOVA
on the four levels of back tasks revealed significant differences in scores,
F(3, 632) = 34.79, p <.001, η2p = 0.25. Specifically, the cognitive load scores
for 0-back were significantly lower than for 2 and 3-back (M0-2 = −2.77;
M0-3 = −4.88); scores for 1-back were significantly lower than for 2 and 3-
back (M1-2 =−2.55;M1-3 =−4.66); and scores for 2-back were significantly
lower than for 3-back (M2-3 = −2.11).

Figure 8: Mean of NASA-TLX scale.

Objective Behavioral Performance: For the classic N-back paradigm,
individual reaction accuracy and reaction time were analyzed. Accuracy
was calculated as the number of correct responses divided by the total
number of trials in each block, and reaction time was the average of all
trial reaction times in each block. Higher accuracy and shorter reaction
times indicate lower cognitive load, and vice versa. A one-way ANOVA
on accuracy and reaction time across the four levels of back tasks showed
significant differences in accuracy, F(3, 632) = 1308.49, p <.001, η2p = 0.78.
Specifically, accuracy for 0-back was significantly lower than for 1, 2, and
3-back (M0-1 = −0.09; M0-2 = −0.44; M0-3 = −0.45); accuracy for 1-back
was significantly lower than for 2 and 3-back (M1-2 =−0.35;M1-3 =−0.01);
and no significant difference was found between 2 and 3-back, p > 0.05.
Significant differences in reaction time were also found, F(3, 632) = 146.83,
p <.001, η2p = 0.27. Reaction time for 0-back was significantly higher than
for 1, 2, and 3-back (M0-1 = 0.16; M0-2 = 0.42; M0-3 = 0.47); reaction
time for 1-back was significantly higher than for 2 and 3-back (M1-2 = 0.25;
M1-3 = 0.31); and no significant difference was found between 2 and 3-back,
p > 0.05.

EEG Data For EEG data, we conducted analyses and better localized brain
activity affected by cognitive load by examining the entire brain, different
brain regions (frontal, central, parietal, occipital, temporal), and different
hemispheres (left, right, midline). A one-way ANOVA on whole-brain
power showed significant differences in alpha band power across conditions,
F(3, 632) = 2.59, p < 0.05, η2p = 0.01. Specifically, alpha power for 0-back was
significantly lower than for 2-back (M0-2 = −0.26). Beta band power also
showed significant differences across conditions, F(3, 632) = 2.40, p < 0.06
(marginally significant). For left and right brain power, a one-way ANOVA
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showed significant differences in alpha band power across conditions for
both the left hemisphere, F(3, 632) = 3.11, p < 0.05, η2p = 0.01 (1-back
significantly higher than 2-back, M1-2 = 0.44), and the right hemisphere,
F(3, 632) = 2.53, p < 0.01, η2p = 0.01 (1-back significantly higher than 2-
back,M1-2 = 0.72). For different brain regions, a one-way ANOVA showed
significant differences in frontal lobe alpha power, F(3, 632) = 2.98, p <
0.05, η2p = 0.01 (1-back significantly higher than 3-back, M1-3 = 0.40);
frontal lobe theta power, F(3, 632) = 2.55, p < 0.06 (marginally significant),
η2p = 0.01; parietal lobe alpha power, F(3, 632) = 2.93, p < 0.05, η2p = 0.01
(1-back significantly higher than 3-back,M1-3 = 0.44); temporal lobe alpha
power, F(3, 632) = 2.64, p < 0.05, η2p = 0.01 (1-back significantly higher than
3-back, M1-3 = 0.21); and central region alpha power, F(3, 632) = 3.04, p <
0.05, η2p = 0.01, 1-back significantly higher than 3-back, ( M1-3 = 0.25).

Figure 9: Accuracy and reaction time for different _n_-back tasks.

EDA Data: For EDA data, we analyzed time-domain indicators, including
skin conductance responses (SCR), which represent transient and rapid
fluctuations in skin conductance, and skin conductance level (SCL), which
represents gradual changes in skin conductance. A one-way ANOVA on SCR
and SCL values across the four levels of back tasks showed no significant
differences, ps > 0.05.

HRV Data: For HRV data, we analyzed frequency-domain indicators,
including LF, which generally reflects parasympathetic nerve activation;
HF, which generally reflects sympathetic nerve activation; and the ratio
of LF/HF, which indicates autonomic nervous system balance. A one-way
ANOVA comparing the four conditions showed significant differences in LF
values, F(3, 632) = 4.40, p < 0.05, η2p = 0.02. Specifically, LF values for
2-back (M = 0.0224, SD = 0.02) were significantly lower than for 0-back
(M2-1 = −0.005). No significant differences were found for HF and LF/HF
values, ps > 0.05.

Multiple Linear Regression

From the data results, different data modalities have distinct correlation
indicators. Notably, difference tests reveal significant inconsistencies in
outcomes between subjective questionnaires and objective behavioral and
physiological measures for the 0-back and 2-back tasks. To explore the
relationship between physiological indicators and subjective questionnaire
scores, a multiple linear regression analysis was performed. Subjective scores
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served as the dependent variable, and significant physiological indicators
(EEG, PPG features) as independent variables. Data were normalized using
Z - scoring to eliminate scale - related differences, and stepwise regression
identified features significantly contributing to subjective scores.The final
regression model includes these significant indicators: whole - brain,
left - brain, right - brain, frontal, parietal, temporal, and central EEG
alpha power; frontal EEG theta power; and PPG’s LF (parasympathetic
activation). The model’s R2 is –0.10. The right - brain alpha power has
the highest contribution (β = −1.70), followed by central alpha power
(β = −1.59), frontal theta power (β = −1.23), parietal alpha power
(β = 1.19), LF (β = −0.86), temporal alpha power (β = 0.75), frontal alpha
power (β = 0.74), left - brain alpha power (β = 0.74), and whole - brain
alpha power (β = −0.64).

Figure 10: Average power of EEG in different frequency bands under various _n_-back
conditions (Note: The bands include parietal α, frontal α, frontal θ , temporal α, whole-
brain α, right-hemisphere α, central α, and left-hemisphere α).

Figure 11: LF values under different N-back conditions.



Engineering a Cognitive Load Assessment System Through Multimodal Sensor Fusion 113

DISCUSSION

This study constructed a quantitative assessment framework for cognitive
load based on multimodal data, providing new insights and methods for
the dynamic monitoring and quantification of cognitive load. By collecting
three types of multimodal data—electroencephalography (EEG), heart rate
variability (HRV), and electrodermal activity (EDA)—this study validated
the effectiveness of multimodal physiological signals in cognitive load
assessment.

First, our results are consistent with previous studies. The analysis of the
NASA-TLX scale for cognitive load showed significant differences among
the 0, 1, 2, and 3-back tasks. Specifically, the scores for 0-back were
significantly lower than for 2 and 3-back, while no significant difference
was found between 0 and 1-back. This may result from some participants
found little difference in difficulty between these two conditions, allowing
them to respond easily without inducing distinguishable load levels. Thus,
they were unable to differentiate these conditions subjectively. In contrast,
objective results differed from subjective results, as both objective behavioral
performance and EEG and physiological results showed no significant
differences between 2 and 3-back. This could be due to some participants
found 3-back tasks difficult to complete, leading to feelings of slackness
and abandonment. Therefore, although they subjectively indicated that
3-back was significantly more difficult than 0, 1, and 2-back, the objective
indicators showed no numerical differences. This indirectly suggests that
combining subjective and objective multimodal data collection provides a
more comprehensive and detailed reflection of individual cognitive load
changes. Regarding the multiple linear regression results, Hogervorst et al.
(2014) used four measurement methods—EEG, ECG, skin conductance, and
eye tracking—to assess cognitive load across different levels of N-back tasks,
demonstrating the most significant relationship between EEG signals and
cognitive load.

The study results not only validate the reliability of the devices used
for physiological signal collection but also provide reliable physiological
feature indicators for future research. Furthermore, the integration of
multimodal data offers a more comprehensive perspective for cognitive load
quantification. While single-modality data (e.g., EEG) can capture changes
in brain activity, it may not fully reflect the complexity of cognitive load.
Combining HRV and EDA provides a more comprehensive reflection of
dynamic changes in the autonomic nervous system and emotional state,
thereby more accurately and stably representing the dynamic characteristics
of cognitive load. This multimodal data integration not only enhances
the precision of assessment but also provides a richer set of features for
future state identification research. For example, combining deep learning
algorithms (e.g., convolutional neural networks or long short-term memory
networks) with multimodal data for feature learning can improve the
generalization and adaptability of models. Additionally, the feature indicators
provided by this study can serve as references for a standardized evaluation
system of cognitive load. Based on feature indicators from multimodal data,
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a standardized assessment tool can be developed for monitoring cognitive
load in fields such as education, healthcare, and human-computer interaction.
In educational settings, real-time monitoring of students’ cognitive load can
optimize teaching strategies. In healthcare, these feature indicators can assist
in diagnosing diseases related to cognitive load, such as anxiety disorders or
attention deficit disorders.

Future research can be expanded in several directions. First, sample size
and task design can be further optimized, such as avoiding floor effects (e.g.,
3-back) and ceiling effects (e.g., 0-back). For example, introducing cognitive
load states from various real-world scenarios can enhance the generalizability
and ecological validity of the research. Second, feature extraction methods
can be combined with machine learning and deep learning algorithms (e.g.,
autoencoders or generative adversarial networks) to further explore the
potential information in multimodal data. Finally, the introduction of more
modalities (e.g., eye tracking or facial expressions) can further enrich the
dimensions of cognitive load assessment. For instance, studies have shown
that when individuals experience higher cognitive load, their gaze duration
(Xue Yao feng & Li Zhuowei, 2019), number of fixations (Henderson &
Ferreira, 1990), and pupil diameter (Biondi et al., 2020) increase. These
directions will help advance cognitive load assessment methods and provide
more reliable theoretical support for practical applications.

CONCLUSION

This study establishes a cognitive load quantification framework using
multimodal sensor fusion, including EEG, HRV, and EDA, demonstrating
that EEG features are the most significant contributors to cognitive
load classification. Through experiments with 159 participants using a
hierarchical n-back task, the research confirms the sensitivity of multimodal
physiological signals to cognitive load changes and highlights the value of
combining subjective and objective data for a comprehensive assessment. The
findings provide a foundation for developing high-precision cognitive load
assessment models and offer practical implications for optimizing task design
in education, healthcare, and human-computer interaction systems. Future
research could enhance generalizability by expanding sample sizes, refining
task designs, and incorporating advanced feature extraction techniques and
additional modalities.
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