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ABSTRACT

The rise of Industry 5.0 has redefined human-robot collaboration, leveraging the
strength of robot in performing repetitive tasks with precision and the one of
humans in expressing decision-making abilities. Ensuring safety requires a real-time
recognition of human gestures, especially when abrupt movements due to inattention
and unexpected circumstances occur. This study integrates wearable magneto-inertial
measurement units (MIMUs) with deep learning techniques to distinguish between
human standard and abrupt gestures during an industrial task. A Long Short-Term
Memory neural network was trained on MIMU acceleration data from 60 participants
performing a pick-and-place task with induced abrupt gestures. After pre-processing
and segmenting signals into overlapping windows, 90% overlap was found optimal
due to its high performance and short time of classification. The testing of the system
on new participants demonstrated its high reliability (balanced accuracy of 91%, macro
F1-score of 90%, specificity of 97%, and recall of 85%) in real-time gesture detection.
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INTRODUCTION

The transition from Industry 4.0 to Industry 5.0 has introduced some new
pillars giving robotics a broader perspective. Technology-driven processes
give way to a human-centric approach, in which the safety, the well-being,
and the inclusion of workers within the work environment are prioritized (Xu
et al., 2021). The collaboration of humans and robots in shared workspaces
enhances their respective and complementary strengths. While robots execute
repetitive and high-precision tasks with speed and consistency, humans
coordinate the collaboration system expressing their essential cognitive skills
such as decision-making, problem solving, and adaptability (Zafar et al.,
2024). To ensure an effective and safe collaboration, the robot system
must constantly recognize human gestures and promptly react to them.
This requirement extends beyond repetitive standard gestures typical of
manipulation tasks in a workshop station (Bortolini et al., 2017; Lin et al.,
2010), also including abrupt movements caused by inattention or external
circumstances unrelated to the work task (Digo et al., 2024Db)
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In recent years, artificial intelligence (AI) has been rapidly gaining
traction in industrial environments, as it represents a new opportunity for
collaboration within human-robot systems. This capability enhances safety
by reducing risks and promoting more effective human-robot interaction.
Recent advancements in Al have significantly improved human-robot
collaboration through the development of cognitive models collecting and
processing information from both the environment and the human operator.
Subsequently, the acquired information is translated into data promoting
the dynamic adaptation of the robot behaviour (Zafar et al., 2024). One
of the most suitable technologies for human motion analysis in a work
environment are magneto-inertial measurement units (MIMUs), which offer
portability, lightweight design, and independence from specific laboratory
settings. When combined, MIMUs and Al open the door to addressing
complex challenges related to real-time human gesture recognition by robots.
According to literature, the integration of MIMUs and Al provides a cost-
effective, versatile, and reliable tool for the identification of human activities
in collaborative robotics systems (Liu et al., 2018; Ordéiiez et al., 2016).

Even if the scientific community has explored the recognition of abrupt
human movements with MIMUs (Digo et al., 2024b; Polito et al., 2023;
Rosso et al.,, 2022), the integration of Al techniques for a real-time
recognition of abrupt gestures still receives relatively little focus. Accordingly,
the aim of this study was to exploit the integration of MIMUs with deep
learning techniques to implement a real-time algorithm for the detection
of human abrupt movements in collaborative robotics scenarios. The final
outcome consisted in utilizing data from a MIMU fixed on the human
forearm to distinguish between standard and abrupt gestures during a
typical industrial task. Specifically, a Long Short-Term Memory (LSTM)
neural network was first trained on a previously collected dataset including
MIMUs signals from sixty subjects during a traditional pick-and-place
task interspersed with randomly induced abrupt gestures. Subsequently,
the trained network was tested online on data recorded from five new
participants.

EXPERIMENTAL TEST

The analyses in this study were conducted using a previously collected dataset
involving sixty healthy participants of working age (Digo et al., 2024a). The
experimental protocol consisted of performing a typical industrial pick-and-
place task while seated at a table. A custom set-up including two boards
with holes positioned at varying distances horizontally from the participant
and vertically from the table was specifically realized (Digo et al., 2024b).
Each participant performed three different trials: (i) FR_r — sitting frontally
with respect to the table and using the right arm (Figure 1a); (ii) FR_Il -
sitting frontally with respect to the table and using the left arm (Figure 1b);
(iii) sitting laterally with respect to the table and using the left arm (Figure 1c¢).
In each trial, a sequence of 30 pick-and-place movements was executed
picking a ball at a time from a box on the table and placing it into a hole
corresponding to the lighten up of a green LED. Among these movements,
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4 abrupt movements were randomly triggered by 2 visual alarms (light-up of
a red LED) and 2 acoustic alarms (sound of a buzzer). In case of the visual
alarm (activated 500 ms after the green LED was turned on), participants
were asked to place the ball in the hole corresponding to the specific red LED
as fast as possible. In case of the acoustic alarm (activated when the green
LED was turned on), participants were asked to raise the arm involved in the
test as fast as possible. During the tests, one MIMU (Opal™ V2R, APDM,
USA.) was fixed on subjects’ forearm used to pick and place the balls during
the test.

(b)

Figure 1: Experimental set-up and protocol: a) FR_r trial; b) FR_I trial; c¢) LA_I trial.

Due to the effective capacity in modelling sequences and time-dependent
data (Ordonez et al., 2016), a LSTM neural network was trained and tested
through linear accelerations recorded with MIMUs on participants’ forearms
for the distinction between standard and abrupt movements. This network
was developed using the high-level library Keras (Python, USA). As shown
in Figure 2, the LSTM architecture is characterized by four layers: (i) Input
Layer with 100 time-steps and 1 feature; (ii) LSTM layer with 100 hidden
units; (iii) Dropout layer with the user-defined rate equal to 0.5; (iv) Dense
layer with a single neuron characterized by a sigmoid activation function.
Moreover, the threshold for binary classification was set to 0.9 to address
class imbalance, as windows with abrupt gestures occur in only about 5% of
cases compared to standard gestures.

Standard gesture

(Class 0)
MIMU forearm
acceleration
Abrupt gesture

(Class 1)

Input LSTM  Dropout Output
Layer Layer Layer Layer

Figure 2: Architecture of the LSTM neural network.
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For the training of LSTM, MIMUs linear accelerations were processed
removing the gravity component, calculating the norm, and segmenting the
resulting signals into 3-second windows corresponding to single movements
and labelled as either normal (label = 0) or abrupt (label = 1). Each 3-second
window was further divided into six sub-windows of 0.5 s each. Considering
the occurrence of acceleration peaks in correspondence of visual or acoustic
alarms, only the 2 the 3", and the 4™ sub-windows were labelled as
abrupt. Subsequently, these sub-windows were split into two groups: the
80% was used for training, and the remaining 20% for testing. The training
set was further divided using k-fold cross-validation, with k=5 (Wong and
Yeh, 2020).

To approach real-time recognition, a sliding windows method was adopted
(Imanzadeh et al., 2024; Xiang et al., 2024). Each window has a fixed length,
and it advances incrementally based on a defined step size. Since the step
size is shorter than the window length, consecutive windows overlap. In this
study, the window length was fixed at 0.5 s, while the overlap percentage
and consequently the step size were varied to assess their impact on network
performance. Overlap percentages of 50%, 75%, 90%, 95%, and 99 % were
tested. Once the signal was segmented, labels were assigned to each window
with the same criteria adopted for the training. Segmented data were provided
as input to the network, comparing the output to the actual movement
through the estimation of performance metrics: balanced accuracy, macro
F1-score, specificity, and recall (Cullerne Bown, 2024; Rivera et al., 2017). In
addition, the time required to analyze a single window was estimated dividing
the average inference time (time to classify data for a single subject) by the
number of windows per subject.

The testing of LSTM neural network was conducted in real-time with five
additional subjects performing the same protocol with the same set-up. A
block diagram of the real-time detection flow is represented in Figure 3. Once
the communication with the sensors is established, MIMUs raw data are
read and stored. The pre-processing phase includes removing gravitational
acceleration, calculating the acceleration norm, and segmenting the data into
overlapping windows. The pre-processed data are fed into the network for
recognition. To visually represent the output of the classification, a green
or red window is displayed if a standard or abrupt gesture is recognized,
respectively. As shown by the blue arrow in Figure 3, the recognition of the
just-completed gesture i occurs simultaneously with the data streaming of the
upcoming movement 7 + 1.

By comparing the actual sequence of gestures with the predicted
one, a confusion matrix was generated, allowing again the computation
of performance metrics (balanced accuracy, macro Fl-score, specificity,
and recall). Additionally, the time required for data pre-processing and
movement classification was calculated and averaged both within and across
subjects.
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Figure 3: Block diagram summarizing the real time detection of movements.

RESULTS AND DISCUSSIONS

Figure 4 presents the percentage performance metrics (balanced accuracy in
blue, macro Fl1-score in red, specificity in green, and recall in yellow) as a
function of the overlap percentage.

Table 1 reports the average time (ms) required to analyze a single window
for different overlap percentages. Among the two overlap percentages (90%
and 95%) with an average processing time below 1 ms, 90% was selected as
the most suitable due to its superior metrics: a balanced accuracy of 87%, a
macro Fl-score of 78%, a specificity of 86%, and a recall of 89%.
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Figure 4: Performance metrics for different overlap percentages.
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Table 1: Average time to analyse a single window for
different overlap percentages.

Overlap (%) Average Time to Analyze
a Single Window (ms)

50% 1.30

75% 1.11

90% 0.84

95% 0.86

99% 1.18

Figure § presents the confusion matrix obtained from the real-time test of
the detection system. In this test, only 12 standard movements out of 390
(3%) were misclassified as abrupt gestures. From a safety perspective, failing
to recognize an abrupt gesture could lead to a potential collision. In this test,
9 abrupt gestures out of 60 (15%) were misclassified as normal ones.
However, performance metrics calculated from the confusion matrix were
always at least equal to 85% (balanced accuracy of 91%, macro Fl-score
of 90%, specificity of 97%, and recall of 85%), testifying an excellent
classification (Rivera et al., 2017).

Real-Time Detection of Movements

Class 0 Class 1
Class 0 A 378 12
©
>
g
Class 1 9 51
Predicted

Figure 5: Confusion matrix with classification outcomes of the real-time detection of
movements.

Table 2 reports the pre-processing and classification times for all five
subjects involved in the test phase. Pre-processing times are always below
10 ms, indicating that the operations performed on raw data to prepare them
for the LSTM neural network are not computationally expensive. Regarding
classification times, they are always below 265 ms, meaning that the network
requires approximately 9% of the total movement duration to perform the
classification.
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Table 2: Pre-processing times and movement classification times for all
subjects (mean =+ standard deviation).

Subject Pre-Processing Movement Classification
Time (ms) Time (ms)
01 8.90 + 1.87 263.8 £65.2
02 9.12+2.14 265.1 £ 95.6
03 9.13 £2.45 251.3 £ 67.9
04 8.83 £2.26 253.7 £ 70.6
05 9.04 +2.49 264.7 £ 70.2
Inter-subjects 9.00 £2.26 259.7 £74.9
CONCLUSION

The aim of this study was to integrate MIMUs with deep learning techniques
to recognize human movements in real-time, thereby improving human-robot
collaboration in terms of both efficiency and safety. Specifically, a LSTM
network was trained on forearm MIMU acceleration data to distinguish
between standard and abrupt gestures occurring during a typical industrial
task. Overall, results demonstrate the effectiveness of this approach in
identifying abrupt movements under conditions closely approximating real-
time. Ongoing research efforts focus on refining the signal acquisition and
processing to minimize streaming delays. The objective is to enhance the
system’s responsiveness, ensuring that abrupt movements are detected at their
earliest onset and hence safety is guaranteed.
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