Human Factors, Business Management and Society, Vol. 176, 2025, 228-241 AH FE
https://doi.org/10.54941/ahfe1006320 |nternational

Combining Al Tools, Low-Code
Platforms, and Product Development in
ICT Education: A Reflective Study on
Educational and Practical Outcomes

Noora Nieminen' and Tero Reunanen?

TTurku University of Applied Sciences, Turku 20520, Finland
2University of Vaasa, Vaasa 65200, Finland

ABSTRACT

Programming education often faces high dropout rates and steep learning curves.
This study explores integrating low-code/no-code (LCNC) platforms with Al tools
in an introductory programming course structured around the CDIO (Conceive,
Design, Implement, Operate) framework. Over 200 first-year engineering and business
students engaged in project-based learning using Al-assisted LCNC platforms.
Analysis of student feedback reveals improvements in engagement, creativity,
problem-solving, and accessibility. However, challenges such as rapid pacing
and instructor familiarity with platforms were noted. Findings suggest Al-driven
LCNC approaches effectively support novice programmers and interdisciplinary
collaboration. Future research should examine long-term impacts on programming
competency and alternative assessment strategies.

Keywords: Al-assisted software development, Low-code/no-code platforms, ICT education,
Collaborative learning

INTRODUCTION

Programming education is crucial for preparing future technologists, yet
traditional introductory courses often suffer from high failure and dropout
rates — in some cases up to 30-50% of students withdraw or fail (Margulieux
et al., 2020). Common challenges include steep learning curves, student
disengagement, and a persistent gap between abstract theory and practical
application (Nieminen & Reunanen, 2024). Beginners must master complex
problem-solving processes and new syntax simultaneously, which can be
overwhelming when instructors’ expertise has become tacit knowledge that
is not easily transferred (Margulieux et al., 2020). These difficulties have
prompted educators to seek more accessible and engaging approaches to
teach computational thinking and programming fundamentals.

In recent years, low-code/no-code (LCNC) development platforms and
artificial intelligence (AI) tools have emerged as promising avenues to
lower the barriers to entry in programming. Low-code platforms minimize
the need for textual coding by providing visual interfaces and pre-built

© 2025. Published by AHFE Open Access. All rights reserved. 228


https://doi.org/10.54941/ahfe1006320

Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 229

components, enabling even non-specialists to create functional applications
with minimal coding experience (Tsakalerou et al., 2024) (Hirzel, 2023).
This democratization of software development has generated enthusiasm
in industry, for example, Gartner (2021) predicts that by 2025, 70%
of new enterprise applications will be developed using low-code or no-
code tools. In parallel, advances in Al (such as generative code assistants
and chatbots) are fueling these trends, offering more intuitive development
experiences (Hirzel, 2023). Al-powered programming assistants can provide
personalized, instant support to learners, helping bridge the gap between
concept and implementation through interactive guidance (Nieminen &
Reunanen, 2024). Taken together, Al and LCNC technologies have the
potential to reshape programming education by reducing the technical
overhead, cognitive load, and frustration often faced by novices, while
enabling creative exploration of real-world problems.

Against this backdrop, our research examines the integration of novel
Al-driven LCNC platforms into a university-level introductory course as a
means of renewing programming education. In particular, we present a case
study of a first-year course (enrolling over 200 engineering and business
students) structured around the CDIO educational framework (Conceive,
Design, Implement, Operate) and incorporating project-based learning with
Al-assisted low-code tools. The study analyzes both educational outcomes
and practical experiences from the course’s initial implementation. We focus
on the course’s impact on student engagement, collaboration, creativity, and
problem-solving skills, and evaluate whether Al-powered LCNC platforms
can serve as a more accessible entry point to programming for beginners.
By reflecting on student feedback and instructor observations, we identify
successes, challenges, and lessons learned, laying the groundwork for future
improvements and research (including a planned follow-up course integrating
Al-assisted programming for novices).

LITERATURE REVIEW

Low-Code/No-Code Platforms in Education

LCNC development platforms have evolved from earlier visual programming
environments (such as block-based coding tools) into powerful professional
tools, and they are increasingly being considered in educational contexts.
A low-code platform provides a high level of abstraction — users manipulate
graphical components and workflows instead of writing extensive code —
which accelerates application development and reduces the effort required
(Huang & Li, 2022). This high-level approach can complement traditional
coding education by allowing students to focus on problem-solving logic and
design, rather than syntax errors. In essence, low-code platforms “enable
contributions from non-specialist users” and “resonate with the pedagogical
goal of fostering computational thinking among students” (Tsakalerou et al.,
2024). By simplifying the development process, LCNC tools may enhance
learners’ abstraction skills and algorithmic thinking. Studies have noted
that low-code environments can foster innovation, creativity, and even
entrepreneurial mindset in students by empowering them to rapidly prototype



230 Nieminen and Reunanen

solutions to real-world problems (Tsakalerou et al., 2024). Moreover,
the collaborative features of many LCNC platforms (e.g. shared visual
models, integrated version control, and modular components) can facilitate
teamwork and communication in student projects (Huang & Li, 2022).
These benefits align with longstanding educational aims to engage a broader
diversity of learners in computing. LCNC platforms essentially extend
the concept of “end-user programming,” enabling “citizen developers” —
individuals with little formal coding background - to create software, while
also aiding professional developers in being more productive (Hirzel, 2023).
The motivation for adopting low-code in education includes not only making
programming more accessible, but also giving students the satisfaction and
“joy of creating something useful” and thinking in a computational way
(Hirzel, 2023). Recent work has begun to examine the pedagogical outcomes
of low-code integration. For instance, Huang and Li (2022) propose that
features of low-code platforms (such as visual modeling and instant feedback)
can facilitate knowledge creation and absorption in information systems
students (Huang & Li, 2022). Early evidence suggests that when used
as an introductory tool, low-code development can serve as a stepping
stone to traditional programming by building confidence and foundational
understanding in a gentler learning curve (Tsakalerou et al., 2024). However,
the academic literature on LCNC in programming education is still nascent,
and further empirical studies are needed to validate its efficacy across
different learning contexts.

Low-Code/No-Code Platforms in Education

The difficulties of learning to program from scratch are well documented.
Beginners often struggle with abstract concepts, logical structures, and
unfamiliar syntax simultaneously, leading to frustration and attrition
(Nieminen & Reunanen, 2024). A lack of immediate, personalized feedback
in large classes can exacerbate the situation — students may get stuck on bugs
or misconceptions for long periods, contributing to feelings of inadequacy
or anxiety. Standard introductory teaching methods (e.g. lectures on theory
followed by coding assignments) sometimes fail to sustain engagement
or to connect with real-world applications, leaving students questioning
the relevance of what they are learning (Nieminen & Reunanen, 2024).
Furthermore, the one-size-fits-all pace of a syllabus can alienate students
at both ends of the spectrum: slower learners fall behind, while advanced
or motivated students might get bored with basic examples. To address
these issues, educators have explored various strategies: pair programming
to improve confidence, game-based assignments to increase motivation,
and visualization tools to clarify abstract concepts (e.g. memory models)
(Nieminen & Reunanen, 2024). Another major challenge is the cognitive
load on novices — they must decompose problems and formulate algorithmic
solutions while also mastering syntax and tools. This has led to interest
in pedagogies that reduce extraneous cognitive load, for example by using
block-based or visual languages initially. Low-code/no-code platforms can
be seen as an extension of this idea, removing the burden of syntax and



Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 231

setup and allowing beginners to construct programs through more intuitive
means. However, one concern is whether such environments sufficiently
teach transferable programming skills or if students might develop a shallow
understanding. This is an ongoing debate: some argue that starting with
visual/low-code tools can build confidence and contextual understanding that
eases the transition to text-based coding, while others caution that students
still need exposure to “real code” to fully grasp computational thinking
(beyond the simplified models).

Al-Driven Solutions for Novice Programmers

In parallel with LCNC developments, the integration of artificial intelligence
into computing education has accelerated, offering new ways to enhance
algorithmic thinking and personalized learning. Al-driven tutoring systems
and coding assistants have shown promise in addressing some of the
aforementioned challenges. For example, intelligent tutoring systems (ITS)
can provide step-by-step guidance or hints tailored to a student’s current
state of understanding, effectively scaling the availability of one-on-one help
(Nieminen & Reunanen, 2024). Modern Al chatbots (such as those powered
by large language models) can answer student questions on demand, explain
code, or suggest solutions, serving as a round-the-clock supplement to human
instructors (Nieminen & Reunanen, 2024). Recent case studies indicate
that Al programming assistants — like GitHub Copilot or ChatGPT - can
“significantly improve the learning experience” in introductory programming
by helping students overcome roadblocks and reducing anxiety. Nieminen
& Reunanen (2024) observed that integrating generative Al tools in a
first-year Python course eased students’ understanding of basic concepts,
provided personalized help on advanced tasks, and even enabled the class
to cover more complex topics earlier than usual. The Al would suggest
code or debugging tips, which students could then evaluate and learn from,
thereby also training their critical thinking about code correctness. Such
Al support can lower the entry barrier for difficult concepts and act as
a form of scaffolding, allowing novices to progress further before hitting
frustration. Importantly, prior studies have also noted that students need
guidance on how to effectively use Al assistance — e.g. recognizing that Al
suggestions might be imperfect and learning to validate and adapt them
(Nieminen & Reunanen, 2024). When used appropriately, Al assistants can
encourage learners to explore beyond the curriculum; for instance, students
with access to Al have ventured into topics like databases or cryptography
out of curiosity, going beyond class requirements. On the other hand,
there are pedagogical concerns about over-reliance on Al (if students accept
Al-generated solutions without understanding them) and issues of academic
integrity that educators must address. Overall, the convergence of Al and
LCNC tools in education represents a novel frontier — Al can enhance low-
code platforms (through features like natural language code generation or
automated guidance), and low-code platforms provide a sandbox where Al
suggestions can be immediately applied and tested by novices. This synergy
is anticipated to make programming education more dynamic, responsive,



232 Nieminen and Reunanen

and inclusive, as it can adapt to individual learning needs and open the
field to students from non-traditional backgrounds. Our study builds on this
emerging literature by examining an educational intervention that explicitly
combines these two elements (Al and LCNC) in an introductory course
setting.

METHODOLOGY

Course Context and Design

The study is based on a new undergraduate course titled “Low-Code
Software Development Basics,” designed for first-year students in engineering
and business programs at a university of applied sciences. The course had
an enrollment of over 200 students (split into smaller sections, including
both Finnish-speaking and international groups). It was structured according
to the CDIO framework, an innovative educational model that emphasizes
learning through the lifecycle of product development: Conceive, Design,
Implement, and Operate. The CDIO approach was chosen because of
its proven benefits in engineering education — it situates learning in a
practical project context and has been shown to improve students” domain
knowledge as well as cognitive and interpersonal skills (e.g. problem-solving,
creativity, teamwork) (Taajamaa et al., 2016). Instead of a traditional
lecture/exam format, the course was delivered through hands-on projects
and active learning exercises aligned with the CDIO stages. Students worked
primarily in teams (3-5 members per team) to encourage peer learning
and collaboration, reflecting the “cooperation and communication skills”
development that CDIO-based courses often target (Taajamaa et al., 2016).

Integration of Al-Powered LCNC Platforms

A distinguishing feature of the course was the incorporation of several low-
code/no-code development platforms, augmented by generative Al tools, into
the learning activities. The goal was to let students conceive an application
idea, design and implement it using accessible LCNC tools (with Al support
for guidance and ideation), and then operate it (testing, demonstrating, and
reflecting on the solution). Over the semester, students were introduced
to a range of LCNC platforms covering different domains of software
development: for example, a mobile app builder (FlutterFlow), a web
application builder, and a game development platform (the Godot engine
with visual scripting). Each platform was chosen to correspond with a
module of the course, so that students gained exposure to building mobile
apps, web/desktop apps, and simple games without traditional coding. These
platforms typically provided drag-and-drop interfaces, visual logic editors,
and pre-built components which allowed students to assemble functional
prototypes quickly. However, they also presented learning challenges, as
students needed to grasp the platform’ concepts and limitations within a
short time. To assist with this, we integrated Al-based tools in multiple ways.
During the Conceive phase of projects, students were encouraged to use
Al brainstorming assistants (such as ChatGPT) to help generate and refine



Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 233

ideas for applications to solve everyday problems. Many teams engaged with
the Al to iterate on their project concepts, user stories, and even to outline
requirements, effectively using it as a creative partner. In the Design phase,
some platforms offered Al features (for instance, an Al that can suggest Ul
layouts or color schemes), and students could leverage those when available.
For general design thinking support, the course provided access to an Al
assistant that could answer questions about design principles or suggest
improvements to user interface mock-ups. During the Implement phase, Al
coding assistants were available especially for the more code-oriented tasks
(e.g., if using Godot, students could get help writing or debugging simple
scripts via an Al pair programmer). Even in purely no-code environments,
students could query the Al with “How do I do X in this tool?” and often
receive useful tips or instructions, thereby reducing time spent searching
through documentation. The teaching team explicitly trained students in
prompt engineering and how to critically evaluate Al outputs — an essential
skill to ensure they remained in control of the development process. Lastly,
in the Operate phase, students deployed their prototypes (where possible,
within free-tier limits) and demonstrated them in a final presentation session.
Al tools were brought into the reflection process too: for example, students
used an Al text analyzer to help summarize user feedback from testing their
apps, and to generate suggestions for future improvements, mimicking how
Al might be used in professional product development cycles.

Course Structure and Activities

The course ran for one semester (15 weeks). In the first weeks, students
were given a crash course on the LCNC platforms and the concept of Al
assistance in development. Small warm-up exercises were conducted (such
as a tutorial on building a simple Ul in the app builder, with an AI chatbot
available for help). Following this, the course was divided into four mini-
projects aligned with CDIO stages: each mini-project lasted 2—-3 weeks and
focused on one platform/technology: for instance, Project 1 — conceive and
design a simple data-entry application using a no-code database app; Project
2 — implement a mobile app for a specific use case in FlutterFlow; Project
3 — implement a simple game using Godot’s visual scripting; Project 4 —
operate (test and refine) one of the previous projects or integrate features.
Each project required a short documentation or reflection deliverable, where
students described their design process, the Al assistance they utilized,
and the outcome. Agile methodologies were lightly incorporated — teams
followed an iterative development approach with weekly stand-up meetings
and rapid prototyping, mirroring industry practices on a small scale. The
instructor’s role was primarily as a facilitator and coach. During lab sessions,
instructors circulated among teams to answer questions and give feedback,
but students were also expected to self-direct their learning, using resources
such as tutorials, community forums, and of course the Al assistants. This
approach was intended to foster personal and team productivity as well
as self-regulation skills, in line with the course’s aim to develop not just
technical proficiency but also 21st-century skills like independent learning
and collaboration.



234 Nieminen and Reunanen

Data Collection

To evaluate the outcomes of this course implementation, we collected data
from multiple sources. The primary source was a post-course feedback survey
administered to all students. This survey included quantitative Likert-scale
questions and open-ended questions, aiming to capture both the overall
satisfaction and specific experiences of students. Key survey items asked
students to rate statements such as “The course was overall successful,” “The
workload was appropriate for the credits,” “The teaching methods (low-code
tools and Al support) helped my learning,” and “I achieved the learning
objectives of this course,” on a S-point scale from Strongly Disagree (1)
to Strongly Agree (5). Other sections of the survey probed aspects like the
usefulness of group work, the clarity of assessment, and the ease of accessing
course materials (the latter to ensure any technical issues with tools were
noted). Two open-ended prompts were included: (1) “What worked well in
this course, and how would you improve it?” and (2) “Additional free-form
feedback or comments.” These allowed students to freely describe their likes,
dislikes, challenges, and suggestions. Out of the ~200 students, 53 responded
to the survey (a response rate of roughly 26 %, which, while modest, provided
a diverse sample including both engineering and business students from
different language groups). In addition to the survey, instructors documented
their observations throughout the course (e.g., common issues teams faced,
notable successes, and any interventions needed). We also retained samples
of student work (with consent), such as project reports and examples of
Al interactions, to qualitatively assess how students were using the Al and
LCNC tools in practice. The analysis presented in this paper focuses on
the survey feedback (quantitative and qualitative) supplemented by these
instructor insights.

STUDENT FEEDBACK ANALYSIS

Quantitative Feedback

The numeric responses from the student survey give an initial overview of
how the class perceived the Al-driven LCNC approach. Overall, student
satisfaction was fairly positive. When asked to evaluate the course holistically,
a majority of respondents agreed that “the course was successful overall” —
the average rating for this statement was 4.12 out of 5, indicating general
agreement. In fact, approximately 76% of the students gave a rating
of 4 (“Agree”) or 5 (“Strongly Agree”) on this item. Students also felt
that the learning objectives were clear, with a mean rating of 4.05/5 for
that statement. This suggests the course’s goals and expectations (e.g.
understanding basic software development processes, learning to use LCNC
tools) were communicated effectively despite the unconventional format.
However, the feedback also highlighted some issues. The statement “The
student’s workload was appropriate for the course’s credit extent” received
a lower average of 3.76/5. This more lukewarm score (with a substantial
34% responding “Neutral” and about 12% disagreeing) signals that many
students found the workload heavy relative to the credits earned. Similarly,



Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 235

“The course’s assessment criteria were clear throughout” had an average
of 3.73/5, with about 15% disagreeing (choosing 1 or 2 on the scale).
This indicates some confusion about grading and expectations, which was
echoed in the written comments. Students were moderately positive about
the pedagogy: “Teaching methods supported my learning” averaged 3.78/5.
While about 68% agreed, a notable minority (17%) disagreed, reflecting a
split in how students felt about the unconventional teaching approach (which
relied on projects, group work, and self-guided tool learning). Interestingly,
one of the highest consensus ratings was for “My own effort contributed to
my learning”, which averaged 4.3/5 — most students acknowledged that their
personal initiative was crucial, likely because the course required significant
independent (and team) work with new tools.

Beyond these general items, other survey questions probed specifics like
teamwork and resources. Although detailed breakdowns are omitted here for
brevity, it’s worth noting that statements regarding teamwork (e.g. “Group
tasks supported my learning”) had mixed responses. Some students strongly
agreed that working in teams was beneficial, whereas others were neutral or
disagreed — an observation that aligns with the polarized sentiments seen in
the open comments about group work. Likewise, when asked if they would
recommend the course to others (a proxy for overall satisfaction), most
respondents indicated they would, but a few emphatically said they would
not (likely those who struggled the most). The quantitative data, in summary,
paints a picture of a class that on average appreciated the innovative course
but also felt the strain of its demands and some ambiguity in execution.

Qualitative Feedback — Thematic Analysis

The open-ended survey responses provide rich insight into the students’
experiences, highlighting what they found most valuable and what challenges
they encountered. We performed a thematic analysis of 53 comments
(some students provided feedback in English, others in Finnish; non-English
comments were translated for analysis). Several key themes emerged.

1) Hands-on Creativity and Broad Exposure: Many students praised
the course for its practical, creative approach and the broad exposure to
different development platforms. For instance, one student wrote, “The
course is extremely useful. Learning how applications, websites, games are
developed in a nutshell gave me a lot of insight. The ‘learn by ourselves by
doing’ teaching method is great and benefited me a lot.” This sentiment of
learning by doing was common among positive comments — students enjoyed
building actual projects (even if small) in various domains. Another student
highlighted the novelty of this experience, calling the course “creative and
useful”. Unlike traditional programming classes that might stick to console-
based exercises, this course let beginners dabble in making GUIs, mobile apps,
and games right away, which some found highly motivating. The excitement
of “trying different development platforms” and seeing tangible results
(a running app or game) gave students a sense of accomplishment.
Importantly, several respondents noted that the course boosted their
confidence. Even those with no prior programming experience were able to



236 Nieminen and Reunanen

contribute to software projects. As one business student noted, “I now feel
more confident that I can be part of technology projects, even with limited
coding experience.” This suggests that the Al-assisted low-code approach
may serve as an empowering introduction to computing for non-traditional
audiences. It demystified software development to an extent — showing that
one can start creating useful applications quickly, which may encourage these
students to continue learning more technical skills in the future.

2) High Workload and Pacing Challenges: Despite the positive remarks on
what they learned, a significant theme was that the course felt overloaded and
fast-paced. Students frequently mentioned the large number of assignments
and the short time frame for each. One candid comment stated, “I actually
spent at least half of my study time this semester just for this one course.
It’s NOT FAIR to the other courses!” — underscoring that the workload
was perceived as disproportionate to the credit points. Indeed, the course
crammed in multiple platforms and a final project; some students felt they
were “never [able to] get a break from the endless tasks.” The one-week
per project rhythm (for some of the tool-specific assignments) was criticized
as too hurried: “One week to learn a whole app is way too short to make
something meaningful,” wrote one student. Consequently, some felt that they
only scratched the surface of each tool without fully mastering any: “We
went through so many different programs, each only briefly... We didn’t
have time to properly delve into any of them.” This aligns with cognitive
load theory — introducing several complex tools in succession can overwhelm
novices. The implication is that future iterations might reduce the number of
tools covered and allow more time on each, a suggestion explicitly made
by a few students (e.g. “I would maybe limit the number of no-code/low-
code tools on the course to three instead of four”). In addition to the volume
of work, deadline management was a noted issue. A couple of comments
in Finnish pointed out that deadlines were shifted multiple times, which,
while intended to help students, ended up demotivating some and causing
confusion about scheduling. In summary, though students valued learning a
lot in a short time, many felt overburdened, indicating a need to calibrate the
workload and pacing.

3) Support and Guidance (Role of Al and Instructors): Given the self-
driven nature of the course, students’ ability to effectively use resources was
crucial. A dominant theme was the lack of sufficient guidance on using the
new tools. While the course encouraged independence (and the use of Al
assistants), some students expected more direct teaching, especially for the
more complex platforms like the game engine. One student complained,
“New platform every week but no real teaching. Need someone to actually
show us how to use the platforms to achieve the required results. More help
with technical stuff would be good.” This indicates that not all students
were able to utilize the Al or documentation to fill the gaps — they desired
traditional instruction (demonstrations, tutorials) to get started. In a similar
vein, another student noted, “There was a lot of work and it required quite a
bit of self-study on YouTube to get the applications working. In my opinion,
the teaching should cover how to use those programs... not [leave it] that
YouTube teaches on students’ own time.” Interestingly, despite the course’s



Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 237

emphasis on Al tools, very few student comments explicitly mentioned Al.
This could imply that some students did not heavily use the Al assistants or
did not find them noteworthy to mention — possibly because they resorted to
familiar sources like YouTube tutorials when stuck. However, one student’s
feedback (from the instructor’s notes) mentioned that they found using
ChatGPT helpful for troubleshooting but had to remember “not to blindly
trust it.” A noteworthy issue raised by a couple of students was that even the
instructors or tutors seemed unfamiliar with the specifics of some platforms:
“It was unfortunate that our tutor teacher didn’t really know the things
taught in the course, so we couldn’t get help or hints except from friends.”
This highlights a challenge when introducing novel tech into a curriculum —
faculty must also be well-versed or it can undermine student support. On
a positive note, those who did leverage the Al tools or external resources
successfully commented that they learned a lot by teaching themselves, which
is a valuable skill. But clearly, finding the right balance of guidance is critical.
The course might need to incorporate more structured onboarding for each
tool (perhaps short instructor-led workshops or official tutorials) to ensure
students aren’t left floundering early on.

4) Collaboration and Teamwork: Feedback on teamwork was mixed,
revealing both benefits and drawbacks. Many students acknowledged that
working in teams was a realistic and useful aspect of the course. They had
opportunities to share knowledge and see different approaches to problem-
solving, which can deepen learning. One student reflected that discussing
ideas within their team and dividing tasks according to each member’s
strength helped them learn more efficiently than working alone. Additionally,
a few students mentioned that the interdisciplinary mix of engineering and
business students was interesting — business students contributed domain
ideas and design perspectives, while engineering students tended to handle
more technical configuration, illustrating a microcosm of real-world software
teams. However, other students were less enthusiastic about the emphasis
on group work. A particularly harsh comment described an “obsession
with group work” and implied that it allowed some students to coast or
that it compensated for “lazy teaching.” There were complaints that not
all team members contributed equally (a perennial issue in group projects),
and frustration when one’s learning depended on others’ engagement. The
survey did not explicitly measure team dynamics, but these comments suggest
that while collaboration was intended to be a course strength, it requires
careful implementation (clear roles, peer evaluation, etc.) to avoid negative
experiences. In the final project’s context, collaboration took on an element
of competition as well — since the course ended with a showcase (or “fair”)
where projects from different groups were presented, some students felt
there was unequal preparation. A few international students voiced that the
communication about the final presentation event was insufficient, especially
for the English section. One lengthy comment detailed that “we were told
how the [final demo day] would be, only the evening before. ... It would
have been beneficial to know how big the event was going to be and that we
were actually competing with each group (English and Finnish side). Some
groups had amazing games and apps (Finnish side), while we were told that



238 Nieminen and Reunanen

a basic working project will be enough.” This student felt it was unfair that
the Finnish groups seemed better informed and perhaps had more instructor
involvement, leading to more polished final projects. While this is more of an
administrative issue, it underscores that transparency and equal support for
all sections are vital, otherwise students can feel disadvantaged.

5) Perceived Educational Value and Suggestions: Many students offered
suggestions for improvement, which often align with the challenges they
noted. A recurring suggestion was to narrow the scope: cover fewer platforms
in greater depth. As one put it, “focus on a few LCNC tools more deeply
and forget the others.” Students felt they would learn more if they could
spend say 3—4 weeks on one platform to build a substantial project, rather
than 1-2 weeks on several. Another suggestion was to allocate more time to
teaching the basics up front (for example, a short primer on programming
or logic for those completely new, before diving into tools). This was
implied in comments where students felt some tasks were “too advanced”
for absolute beginners who lacked any programming background - e.g.
writing concept documents or doing agile rituals without context could
confuse those who have never coded or seen a software project before.
Some students, while acknowledging the value of the course, questioned its
placement in the curriculum. One said it “felt a bit pointless, especially as a
compulsory course... this might have fit better as a recap or elective course.”
This perspective likely comes from students who would have preferred a
traditional coding course first, and see the low-code approach as something
extra. Nonetheless, the majority did see the relevance; even the critical
voices often prefaced with “it was interesting, but...”. Importantly, issues of
assessment and feedback were highlighted. Several students complained that
the grading criteria were not clear and that they received little feedback on
their assignments or projects. “The assessment methods were not explained
in detail and were vague. We did not receive any feedback for any of our
projects... I would like to know how my projects can be better,” wrote
one student. This indicates that while students were producing work, they
craved more formative feedback to understand the quality of their work
and how to improve — a reasonable expectation that future iterations should
address (perhaps through rubric-based feedback or peer reviews). Another
student commented that the final project grading felt unjust, likely tied to the
earlier remark about different information given to different groups. Ensuring
fairness and clarity in evaluation is clearly an area needing attention.

In summary, the qualitative feedback reveals that students valued the
innovative, practical nature of the course and felt it gave them unique insights
and confidence, but they also experienced significant pain points: the course
demanded a lot of self-learning in a short time, and gaps in support and
communication sometimes left them frustrated. Many criticisms centered not
on the concept of using AI/LCNC (which few explicitly opposed) but on the
execution details — workload, instruction, and assessment. These insights are
invaluable for refining the course design. Despite the challenges, it’s notable
that a number of students ended their feedback on a positive note, recognizing
the experiment’s intentions. For example, one student wrote (translated from
Finnish), “Otherwise everything went OK, but the schedule for working on



Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 239

tasks was too tight, and I don’t think the final projects were evaluated fairly.
The final project’s evaluation criteria should have been known from the start.
However, it was a well-done course. The only problem was that the use of
different programs wasn’t taught enough, so everyone spent a lot of their own
time learning them.” This encapsulates the mixed but ultimately constructive
tone of many comments, acknowledging both the benefits of the course and
the areas for improvement.

CONCLUSION

The Al-assisted LCNC course significantly impacted student engagement,
creativity, problem-solving abilities, and learning outcomes, providing an
accessible entry point into programming. Key findings include:

Enhanced Engagement and Creativity: Students displayed high motivation
and creativity by developing practical, real-world applications addressing
everyday problems. Projects ranged from budgeting apps to educational
games, with Al acting as a catalyst for idea generation. Students valued
the freedom to choose topics and appreciated the user-centered, tangible
outcomes compared to traditional theoretical coursework.

Rapid Skill Development and Problem-Solving: Students quickly acquired
technical skills and exhibited problem-solving resilience, handling advanced
tasks like API integration, UI troubleshooting, and logic flow design. Despite
challenges, students effectively learned new technologies rapidly, often
with Al assistance. Notably, teams accomplished complex tasks like user
authentication and database integration earlier than traditionally expected,
demonstrating genuine computational thinking and logical problem-solving
rather than superficial tool usage.

Role of AI Assistance: Al significantly supported student learning by
providing creative prompts, code examples, debugging assistance, and quiet
tutoring for less outspoken students. Students recognized Al as a beneficial
but imperfect tool, cultivating critical thinking and a balanced understanding
of AI’s capabilities and limitations. However, benefits varied based on
students’ comfort with and trust in Al tools, highlighting the need for
guidance on effective Al usage.

Collaboration and Interpersonal Skills: Team-based projects positively
influenced students’ collaboration, communication, and interpersonal skills,
though outcomes varied. Stronger teams effectively employed management
tools like Trello, showcasing improved teamwork over time. The final project
presentations allowed students, particularly from business backgrounds, to
demonstrate strengths beyond coding, underscoring the interdisciplinary
benefits.

Accessibility and Inclusion: The LCNC approach lowered entry barriers,
enabling non-technical students to meaningfully contribute, notably
increasing course completion rates. Free and open-access tools ensured
inclusivity, allowing diverse student participation. However, some students
found the rapid pace challenging, suggesting that low-code might best serve
as a complementary rather than initial introduction to programming.



240 Nieminen and Reunanen

Challenges and Limitations: Practical obstacles included limited free-
tier functionality of LCNC tools and platform-specific learning curves.
Some students desired deeper coding experience or clearer assessment
criteria, indicating areas for pedagogical improvement. Additionally,
external dependencies like platform downtimes occasionally disrupted course
progress.

In summary, the Al-driven LCNC approach effectively motivated and
engaged students, accelerated technical skill acquisition, and improved
problem-solving and collaborative abilities, while highlighting key areas for
refinement in instructional scaffolding and resource selection.

Future Research Directions: Future research should focus on tracking how
LCNC students perform in subsequent programming courses, comparing
LCNC-first versus code-first approaches, and further refining Al integration
with specialized educational Al systems. Exploring Al-based assessment for
faster feedback and the evolving role of automated low-code development in
aligning education with workplace practices will be important. The Al-driven
LCNC approach effectively motivated and engaged students, accelerated
technical skill acquisition, and improved problem-solving and collaborative
abilities, while highlighting key areas for refinement in instructional
scaffolding and resource selection. It provides a promising, inclusive
entry into programming education, especially for students from diverse or
non-traditional computing backgrounds, suggesting a complementary role
alongside traditional programming instruction lifecycle.

ACKNOWLEDGMENT

The authors wish to express their gratitude for the opportunity to conduct
this research in the spirit of open science. We affirm that our work was
guided solely by our commitment to contribute to the academic community,
free from external demands or influences. Furthermore, we acknowledge
that this research was undertaken without the benefit of external funding,
underscoring our dedication to the pursuit of knowledge. We hope that our
findings will serve to further enrich the discourse in our field.

REFERENCES

Crawley, E. E, Malmgqvist, J., Ostlund, S., & Brodeur, D. (2007). Rethinking
engineering education: The CDIO approach. Springer. https://doi.org/10.1007/
978-0-387-38290-6

Friedenthal, S., Moore, A., & Steiner, R. (2008). A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann; Elsevier Science.

Gartner. (2021). Gartner forecasts 70% of new enterprise applications will use low-
code by 2025. Retrieved from https://www.gartner.com/en/newsroom.

Guzdial, M. (2019). It’s time for more research on learning programming with block-
based languages.

Hirzel, M. (2023). Low-code programming models. Communications of the ACM,
66(2), 36-44. https://doi.org/10.1145/3573626

Huang, R., & Li, Y. (2022). The impacts of low-code development on IS learning.
Northeast Association of Information Systems (NEAIS) Proceedings, 2022.
Retrieved from https://aisel.aisnet.org/neais2022/.


https://www.gartner.com/en/newsroom
https://doi.org/10.1145/3573626
https://aisel.aisnet.org/neais2022/

Combining Al Tools, Low-Code Platforms, and Product Development in ICT Education 241

Kim, J., Merrill, K., Xu, K., & Sellnow, D. D. (2020). My teacher is a machine:
Understanding students’ perceptions of Al teaching assistants in online education.
International Journal of Human—-Computer Interaction, 36(19), 1902-1911.
https://doi.org/10.1080/10447318.2020.1817673

Margulieux, L. E., Catrambone, R., & Guzdial, M. (2020). Reducing withdrawal
and failure rates in introductory programming with subgoal labeled worked
examples. International Journal of STEM Education, 7(1), 20. https://doi.org/10.
1186/s40594-020-00218-z

Nieminen, N., & Reunanen, T. (2024). Artificial intelligence as a catalyst: A case
study on adaptive learning in programming education. Proceedings of AHFE
2024.

Qian, Y., & Lehman, J. D. (2017). Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education (TOCE), 18(1), 1-24. https://doi.org/10.1145/3077618

Taajamaa, V., Eskandari, M., Karanian, B. A., Airola, A., Pahikkala, T., &
Salakoski, T. (2016). O-CDIO: Emphasizing design thinking in CDIO engineering
cycle. International Journal of Engineering Education, 32(3B), 1530-1539.

Terzopoulos, G., & Satratzemi, M. (2020). Voice assistants and smart speakers
in education: A systematic review. Informatics in Education, 19(3), 473-490.
https://doi.org/10.15388/infedu.2020.21

Tsakalerou, M., Evangelou, S. M., & Xenos, M. N. (2024). Unlocking the secrets
of student success in low-code platforms: An in-depth comparative analysis. In
Proceedings of the 2024 ASEE Annual Conference & Exposition.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological
processes. Harvard University Press.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35. https://doi.org/10.1145/1118178.1118215

Zhou, M. Y., & Lawless, W. (2015). An overview of artificial intelligence
in education. Artificial Intelligence: Concepts, Methodologies, Tools, and
Applications, 2(1), 2445-2452.


https://doi.org/10.1080/10447318.2020.1817673
https://doi.org/10.1186/s40594-020-00218-z
https://doi.org/10.1186/s40594-020-00218-z
https://doi.org/10.1145/3077618
https://doi.org/10.15388/infedu.2020.21

	Combining AI Tools, Low-Code Platforms, and Product Development in ICT Education: A Reflective Study on Educational and Practical Outcomes
	INTRODUCTION
	LITERATURE REVIEW
	Low-Code/No-Code Platforms in Education
	Low-Code/No-Code Platforms in Education
	AI-Driven Solutions for Novice Programmers

	METHODOLOGY
	Course Context and Design
	Integration of AI-Powered LCNC Platforms
	Course Structure and Activities
	Data Collection

	STUDENT FEEDBACK ANALYSIS
	Quantitative Feedback
	Qualitative Feedback – Thematic Analysis

	CONCLUSION
	ACKNOWLEDGMENT


