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ABSTRACT

Accurate identification of individuals’ stress states is critical for optimizing intervention
strategies and enhancing safety performance in intelligent human-machine interaction
systems and high-risk operational environments. Virtual Reality (VR) technology
offers a novel paradigm for inducing controllable and ecologically valid stress
through highly immersive scenarios. The development of high-quality multimodal
stress datasets represents an urgent requirement to advance emotion computing
and practical applications of intelligent human-computer interaction. This study
presents the creation of a VR-based multimodal stress dataset. The experimental
protocol comprised four tasks: ground walking, elevated platform 1 walking, elevated
platform 2 walking, and jumping platform tasks. Physiological data including
electroencephalogram (EEG), photoplethysmography (PPG), electrodermal activity
(EDA), and eye tracking data were collected across all tasks, along with subjective
stress ratings in different scenarios. Data from 30 participants were acquired.
A binary classification was performed between two representative scenarios: ground
walking (low-stress state) and jumping platform (high-stress state). Following feature
extraction from EEG and PPG signals, classification models (decision tree, random
forest, Bagging, and AdaBoost) were implemented. The random forest classifier
achieved optimal performance, yielding a cross-subject five-fold cross-validation
accuracy of 0.8360± 0.0162 and F1 score of 0.8140± 0.0301 for distinguishing between
low-stress and high-stress states. This dataset provides essential data support
for real-time stress recognition, with potential applications in intelligent human-
computer interaction and medical rehabilitation. Data-driven interventions based on
this resource could significantly enhance health outcomes and work efficiency across
multiple domains.
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INTRODUCTION

The rapid advancement of artificial intelligence and big data technologies
has opened new avenues for precise identification and assessment of stress
states through multimodal data fusion. In safety-critical environments such
as intelligent cockpits, nuclear power plant control rooms, and elevated work
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platforms, operators’ stress responses directly impact operational reliability
and system safety (Seinfeld et al., 2016), highlighting the urgent need to
develop real-time stress recognition systems.

From a theoretical perspective, stress refers to a nonspecific systemic
response triggered by internal and external environmental stimuli (McLeod,
2010). This concept traces back to Cannon’s (1925) “fight-or-flight” theory,
which revealed that individuals in hazardous situations exhibit characteristic
psychophysiological state alterations. Currently, accurate identification of
stress states not only drives breakthroughs in fundamental psychological and
neuroscientific research but also represents a critical technical challenge for
enabling personalized interventions and enhancing human-machine system
safety.

Traditional stress induction methods (e.g., laboratory simulations or
questionnaires) often struggle to effectively capture real-world physiological
and behavioral responses due to poor environmental controllability and
low ecological validity. Virtual Reality (VR) technology, with its highly
immersive experience and programmable scenarios, offers a new paradigm
for controllable and realistic stress induction. Growing research indicates
that VR scenarios can induce psychological and physiological stress responses
through designed stress tasks (Seinfeld et al., 2016; Krijn et al., 2004; Brown
et al., 2006; Dammen et al., 2022; Peterson et al., 2018; Huppert et al.,
2013). For instance, existing studies have constructed VR scenarios to induce
stress in participants and found that VR-induced stress can be quantified
through neurophysiological indicators such as frontal alpha asymmetry,
occipital beta/gamma band activity, occipital alpha activity (OAA), heart
rate variability (HRV), and cortisol levels (Brouwer et al., 2011; Aspiotis
et al., 2022). Ji et al. (2020) developed a stress ratio prediction model using
VR and EEG data through constructed vertical building spaces, but relied
solely on EEG data. Perez-Valero et al. (2021) created personalized stress
quantification using EEG and machine learning regression algorithms, yet
faced limitations of single-modality data and high computational costs for
individualized models. Kim et al. (2024) classified stress states in real-time
using VR interview paradigms with single-channel EEG and GSR via deep
learning, but their behind-ear EEG setup limited whole-brain monitoring,
and computational demands hindered wearable applications.

To address these limitations, this study proposes constructing a VR-based
multimodal stress dataset. Through gradient task design, we aim to induce
varying stress intensities while synchronously collecting EEG, PPG, EDA,
and eye-tracking data with subjective stress ratings for multidimensional
annotation. Furthermore, machine learning classifiers will be employed
to identify different stress states. Specifically, four task scenarios were
designed: ground walking, elevated platform walking at two heights
(adjusted via elevation differences), and platform jumping. The gradient
difficulty (low-risk to high-risk) simulates real-world stress escalation while
controlling individual differences through within-subject design. Moreover,
the ErgoLAB V3.0 platform enables millisecond-level synchronization of
multimodal data collection, resolving temporal alignment issues from
traditional asynchronous signal acquisition.
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The study’s innovations manifest in two aspects: (1) Multimodal Data
Fusion: First integration of EEG, PPG, EDA, and eye-tracking in VR stress
experiments, establishing a comprehensive physiological-behavioral stress
characterization system. (2) Cross-Subject Generalization: Implementing
five-fold cross-validation ensures high classification accuracy (83.6%)
on unseen subjects, laying data and technical foundations for smart
healthcare (e.g., real-time anxiety intervention), high-risk occupational
training (e.g., stress resilience assessment), and next-generation human-
computer interaction systems (e.g., adaptive interfaces).

METHODS

Participants: Thirty participants (1:1 male-to-female ratio) were recruited for
the experiment. All participants had no behavioral or cognitive impairments,
no history of mental illness, and no motion sickness (including VR-related
motion sickness). They were instructed to abstain from alcohol, caffeine, or
any medications for 2 hours prior to the experiment.

Experimental Design: A single-factor within-subject design was employed.
The independent variable consisted of four VR task scenarios: ground
walking, Elevated Platform 1 Walking (height above ground), Elevated
Platform 2 Walking (height above depressed ground), and jumping from
Elevated Platform 2. The order of the two elevated platform walking tasks
was counterbalanced across participants.

VR Scenarios: The experimental environment featured a VR elevated
platform scenario, where the height difference between the platform and
the ground could be dynamically adjusted. Two height configurations
were selected: Configuration 1: The elevated platform was raised to its
maximum height while the ground remained unchanged. Configuration 2:
The elevated platform was raised to its maximum height, and the ground was
simultaneously lowered to its minimum level. By manipulating these height
differences and requiring participants to jump from the elevated platform,
the experiment aimed to induce varying levels of stress states.

Equipment: The ErgoLAB V3.0 Human-Machine Environment
Synchronization Platform (Kingfar International Inc., China) was used to
synchronously record multimodal data. Specifically, an ErgoVR Eyetracker
virtual reality eyetracker (120 Hz) was employed to collect eye-tracking
data; an ErgoLAB EEG wearable electroencephalogram device (256 Hz) for
electroencephalogram (EEG) data; an ErgoLAB EDA galvanic skin response
sensor (64 Hz) for electrodermal activity (EDA) data; an ErgoLAB PPG
pulse sensor (64 Hz) for heart rate variability (HRV) data; and a camera for
behavioral data recording.

The demographic survey included questions on participants’ age, gender,
height, weight, history of acrophobia (fear of heights), prior high-altitude
experiences (e.g., bungee jumping, rock climbing, skydiving), VR usage
frequency, and susceptibility to screen-induced motion sickness.

Scales: The State-Trait Anxiety Inventory (STAI, Spielberger, 1983)
was used to measure participants’ trait anxiety. A 10-point Likert scale
(1 = “completely not nervous”/”completely not afraid”, 10 = “extremely
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nervous”/”extremely afraid”) was employed to assess participants’ stress
levels, where they were asked to rate their perceived nervousness or fear from
the recent experience on a scale of 1 to 10.

Figure 1: Schematic of experimental equipment and setup.

Experimental Procedure

Pre-experiment: Participants signed informed consent forms and completed
the demographic questionnaire and STAI.

Baseline Data Collection: The experimenter attached EDA, PPG, and EEG
sensors to the participant. Participants were instructed to sit facing a wall
for 6 minutes: 3 minutes with eyes closed (prompted by the experimenter),
followed by 3 minutes with eyes open. The VR eye tracker was then
calibrated, and participants sat quietly with eyes open for 3 minutes to collect
baseline data.

State 0 (Ground Walking): Participants walked across a flat virtual
platform from one end to the other and back. After reaching each endpoint,
they verbally rated their stress level on the 10-point scale.

State 1 (Elevated Platform 1Walking): Participants walked across Elevated
Platform 1 (height above ground) with toes touching the heel of the front foot,
arms crossed, and gaze fixed on their feet to maintain balance. Stress ratings
were collected at both endpoints using the 10-point scale.

State 2 (Elevated Platform 2 Walking): Participants repeated the walking
task on Elevated Platform 2 (height above depressed ground), following the
same instructions as in State 1. Stress ratings were recorded at both endpoints.

State 3 (Platform Jumping): Participants were instructed to walk to the
center of Elevated Platform 2 and jump down. After landing, they verbally
rated their stress level on the 10-point scale.

Post-experiment: All equipment was removed, and participants were
debriefed.
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Figure 2: Experimental flowchart.

Dataset Description

The dataset is available on the kingfar.cn website and includes raw data
from EEG, EDA, PPG, eye-tracking, demographic questionnaires, State-Trait
Anxiety Inventory (STAI), and Likert scale ratings. The dataset is structured
as follows:

Dataset_description.json: Metadata describing dataset ownership and
licensing.

readme.json: Documentation detailing the VR stress experiment design,
data collection protocols, label definitions, and other contextual information.

participants.csv: A CSV file containing demographic and psychological
trait data for all 30 participants, including: Participant ID, Gender and STAI
scores (trait anxiety).

participants.json: A data dictionary explaining the column headers and
variables in participants.csv.

Sourcedata: A directory containing raw physiological and behavioral data:
info.txt: Technical specifications for EEG, EDA, PPG, and eye-tracking

devices, including sampling rates, acquisition systems, and channel
configurations.

Raw data folders: 30 participant-specific folders (named 001, 002,..., 030),
each containing:

EEG.csv: 33-column EEG raw data (timestamp+ 32-channel EEG values).
EDA.csv: 2-column EDA raw data (timestamp + 1-channel EDA value).
PPG.csv: 2-column PPG raw data (timestamp + 1-channel PPG value).
Eyetracking.csv: 4-column eye-tracking data (timestamp + 3D gaze

coordinates + pupil diameter).
event.txt: 5-column event marker file with:Segment ID, Stimulus

Timestamp (Time(s)), Stimulus Name, Stimulus Value, EventType (e.g., task
onset/offset, jump event).

DATA PROCESSING AND ANALYSIS

In this study, State 0 (ground walking) and State 3 (platform jumping) were
operationally defined as low-stress and high-stress conditions, respectively.
Classification of stress states was performed using photoplethysmography
(PPG) and electroencephalography (EEG) signals to distinguish between these
two extremes of stress intensity.
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Notably, three recordings (Participant 025, 026, and 027) were derived
from a single subject, whereas all other participants contributed two
consecutive recordings under controlled experimental conditions.

Signal Quality Assessment

A rigorous quality control protocol was implemented to evaluate multimodal
data integrity. Initial verification confirmed valid acquisition of all
physiological signals (EEG, PPG, EDA, eye tracking). For EEG and PPG, a
five-tier quality grading system was applied:

1-Excellent quality: Minimal noise or no artifacts.
2-Motion artifacts: Transient interference from participant movement.
3-Channel-specific degradation: Poor quality in some channels.
4-Moderate interference: Episodic high-amplitude noise in some epochs.
5-Severe interference: Sustained saturation or uncorrectable artifacts.

Figure 3: Analysis of signal quality for EEG and PPG data.

In the current study, self-reported stress levels during the experiment
and electrodermal activity (EDA) data served as indicators to evaluate the
effectiveness of stress induction. The distribution of self-reported stress levels
for participants in State 0 (task_0) and State 3 (task_3) is illustrated in the
figure below. It is evident that, compared to State 0, a greater proportion
of participants in State 3 reported higher stress scores, suggesting that the
experimental protocol successfully induced a stress state.

The table below presents the range of EDA data for each participant during
task_0 and task_3. The results clearly demonstrate a significant increase
in EDA levels during State 3 compared to State 0. This elevation can be
attributed to the activation of the sympathetic nervous system under stress,
which stimulates sweat gland activity. Increased perspiration elevates skin
conductance, thereby raising EDA. The marked change in this metric further
supports the validity of stress induction in the experiment.
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Figure 4: Number of participants providing subjective questionnaire scores under state
0 (task_0) and state 3 (task_3).

Figure 5: Range of EDA data under state 0 and state 3 tasks.

Data Processing

This study investigates stress state detection using electroencephalography
(EEG) and photoplethysmography (PPG) data, with tailored approaches for
data processing, feature extraction, and classification. Data segmentation
was performed using a 10-second sliding window with a 1-second step,
resulting in 1,205 low-stress samples and 712 high-stress samples. To
ensure robust cross-validation, the segmented data were divided into five
subject-independent groups, each containing six participants. Additionally,
60-second segments of resting-state EEG data (recorded during virtual reality
sessions with eyes open, following 3 minutes of acquisition) were extracted
for further analysis.

For EEG preprocessing, the data were filtered using a 0.5–100 Hz
bandpass filter, followed by 50 Hz notch filtering to eliminate powerline
interference and a detrending step to remove baseline drift. Ocular artifacts
were intentionally retained during preprocessing to preserve the integrity of
real-time stress detection. For PPG signals, preprocessing included a 0.5–8Hz
bandpass filter to isolate physiological signals, followed by peak detection to
derive NN interval sequences for heart rate variability (HRV) analysis.
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Figure 6: Data analysis flowchart.

Feature Extraction

Prior studies have established physiological markers of stress, including
increased theta band power (Smitha et al., 2017), decreased alpha band
power (Dasari et al., 2023), elevated beta band power (Arsalan et al.,
2019), altered frontal asymmetry (Fu et al., 2022), and reduced HRV with
shifts in low-frequency (LF) and high-frequency (HF) power (Dalmeida &
Masala, 2021). Aligning with these findings, the following features were
extracted: EEG: Relative power of theta, alpha, beta_1 (13–20 Hz), beta_2
(20–30 Hz), and gamma (30–45 Hz) bands across all channels. A stress-
sensitive relative_gamma feature, defined as the ratio of gamma power to the
sum of alpha and beta power, was also computed. PPG: Time-domain (e.g.,
meanNN interval, SDNN) and frequency-domain (LF,HF,LF/HF ratio) HRV
features derived from NN intervals. To mitigate individual variability, two
baseline correction methods were tested: (1) subtracting resting-state features
from task-state features and (2) dividing the subtracted values by resting-state
features.

Classification Algorithm

In the current classification task, the performance of the random forest
model was analyzed under various experimental scenarios. This approach
was chosen due to the random forest’s advantages in fast training speed,
strong generalization capability, and high robustness to noise interference.
Additionally, the random forest algorithm provides a convenient method
for evaluating feature importance, which facilitates subsequent feature
analysis. Prior studies on stress detection have also demonstrated the superior
performance of random forest models (Rauf& Saeed, 2024; Devi et al., 2020;
Zanetti et al., 2018). To ensure a comprehensive comparison, the results
of several machine learning models—including random forest, decision
tree, AdaBoost, HGBT, SVM, and BaggingClassifier—were evaluated using
identical datasets and feature sets.
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The specific steps were as follows: The extracted features were first
classified using a random forest classifier. Feature screening was performed to
identify the most relevant features. This was achieved by randomly shuffling
features to assess their importance, as shown in Table 1. The thresholds of
0.02, 0.03, 0.04, and 0.05 correspond to feature counts of 25, 15, 9, and 7,
respectively. The results indicate that selecting the top 15 features (5 EEG
features and 10HRV features) yields optimal classification performance. This
subset of features was found to contribute most significantly to the model’s
accuracy.

Table 1: Random forest classification accuracy and F1 score with different threshold-
based feature selection.

Threshold= 0.02 Threshold= 0.03 Threshold= 0.04 Threshold= 0.05

Accuracy 0.800±0.034 0.804±0.036 0.792±0.041 0.780±0.048
F1 Score 0.782±0.029 0.784±0.044 0.772±0.048 0.762±0.054

Subsequently, a comparative analysis was conducted on the classification
results obtained under two different baseline removal methods, as well as
under the condition without any baseline removal. The analysis revealed that
the method combining subtraction and division for baseline removal yielded
superior results compared to other approaches. Specifically, after selecting
the top 15 features and applying the subtraction-followed-by-division
baseline removal technique, the classification performance of four machine
learning models—AdaBoost, HGBT, SVM, and Bagging—was evaluated and
compared. The results of this comparison are presented in Table 2, which
illustrates that the Bagging model achieved the highest accuracy among the
models tested. Furthermore, the average confusion matrix derived from the
5-fold cross-validation across subjects for the Bagging model is depicted in
Figure 7, providing a detailed overview of its classification performance.

Table 2: Classification accuracy and F1 score of different models.

Adaboost
(100)

Adaboost
(90)

HGBT
(100)

HGBT (90) HGBT (80) SVM (rbg) SVM
(linear)

Bagging RF

Accuracy 0.800±0.021 0.802±0.021 0.804±0.036 0.804±0.036 0.810±0.033 0.808±0.032 0.792±0.043 0.840±0.015 0.836±0.016
F1 Score 0.776±0.029 0.778±0.029 0.770±0.063 0.772±0.063 0.778±0.058 0.778±0.054 0.760±0.062 0.818±0.035 0.814±0.030

Figure 7: Average confusion matrix from 5-fold cross-validation across subjects.
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DISCUSSION

This study successfully established a multimodal stress dataset based on
virtual reality (VR) technology and validated its practicality in stress state
classification. The experimental results demonstrated that different levels of
stress responses could be effectively induced by adjusting VR scenario tasks.
A significant increase in electrodermal activity (EDA) data, with an average
increase of 47% in state 3 compared to state 0, confirmed the activation
of the sympathetic nervous system and supported the effectiveness of stress
induction. Furthermore, after fusing electroencephalography (EEG) and
photoplethysmography (PPG) features, the random forest model achieved
the highest performance (83.6% accuracy) in cross-subject classification
tasks, highlighting the importance of multimodal data complementarity in
enhancing classification accuracy.

The dataset provides critical support for the development of real-time
stress recognition technology. The model established in this study exhibited
several advantages. In terms of model performance, only 15 features from
EEG and PPG were used, with a relatively small number of features and
a simple model structure, significantly reducing computational resource
requirements. In practical applications, this approach not only effectively
reduces hardware costs but also improves system operational efficiency,
enabling real-time prediction of subjects’ stress states. Additionally, the
current classification model achieved high results in cross-subject evaluation,
demonstrating strong generalization performance and adaptability to
different subjects’ data characteristics, maintaining stable and excellent
performance in diverse practical scenarios.

For instance, in the field of medical rehabilitation, a personalized stress
feedback system can be constructed by combining real-time EEG and PPG
monitoring for intervention training in patients with anxiety disorders or
post-traumatic stress disorder (PTSD). The system can dynamically adjust
VR scenario difficulty based on patients’ physiological signals, gradually
exposing them to controllable stressors to enhance psychological resilience.
In high-risk occupational safety (e.g., firefighters and high-altitude workers),
this technology can be integrated into training systems. By real-time
monitoring of operators’ stress levels, it can trigger early warnings or adjust
task allocation promptly, reducing the risk of errors caused by excessive
tension. Furthermore, intelligent human-machine interaction systems can
optimize interaction strategies based on users’ stress states. For example, in
autonomous driving, if the system detects that the driver is in a high-stress
state, it can automatically switch to assisted driving mode to enhance safety.

Despite these achievements, the study has certain limitations. First, the
small sample size (30 subjects) may affect the model’s generalization ability,
and the subject group does not include special occupational groups (e.g.,
firefighters and pilots), which may limit the model’s applicability among
specialized workers. Additionally, individual differences (e.g., acrophobia
and previous high-altitude experiences) were not fully controlled, potentially
introducing confounding factors. Future research can be improved in the
following directions: expanding sample diversity to include more high-risk
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occupational groups; optimizing VR task design (e.g., introducing dynamic
environmental changes or social stressors) to enhance the ecological validity
of stress induction; exploring the modeling capabilities of deep learning
models (e.g., Transformer or graph neural networks) for multimodal time-
series data; and combining real-time feedback systems to develop closed-loop
intervention strategies, further enhancing the practical application value of
stress recognition.

CONCLUSION

Through innovative VR task design and multimodal data fusion, this
study provides high-quality data support and a technical paradigm for
stress recognition research. Although sample limitations exist, the research
results significantly advance the fields of affective computing and intelligent
human-machine interaction. Future work should continuously optimize data
diversity and model robustness to promote the transition of this technology
from laboratory settings to practical applications.
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