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ABSTRACT

Virtual Reality (VR) technology allows users to explore unlimited virtual environment
spaces. Users can explore virtual spaces using a Head Mounted Display (HMD) device.
Various techniques for exploring VR spaces, such as teleportation, flying, walking-
in-place, and devices such as omnidirectional treadmills, are often used. Previous
literature states that real walking is the most natural method to explore virtual spaces.
However, the constraint to the natural walking method is the limited physical space,
so the user is at risk of encountering the boundary wall of physical space. Redirected
Walking (RDW) technique addressed solving the limitations of tracking space so that
users can explore unlimited virtual spaces without encountering the boundaries of
physical space. The RDW technique has experienced rapid development since it was
first introduced more than two decades ago; until now, its development has utilized
artificial intelligence technology. This pilot study aims to explore the use of AI in the
Deep Reinforcement Learning framework in designing virtual environment designs
through a simulation system. This study uses machine learning agents trained to
explore a non-predefined pathway virtual space larger than the tracking space by
applying the essential principles of redirected walking techniques such as rotation,
translation, and curvature gain. The study results show that machine learning agents
can learn well and explore virtual spaces larger than the size of tracking spaces, both
using warning walls and without warning walls.

Keywords: Deep reinforcement learning, Machine learning agents, Redirected walking, Virtual
environment

INTRODUCTION

Virtual Reality (VR) technology allows us to explore unlimited Virtual
Environments (VE). Users can explore it using a head-mounted display
(HMD) device. Various exploration techniques such as teleportation, flying,
walking in place (Lee et al., 2018), and omnidirectional treadmill devices
are often used. Real walking is considered the most natural technique
for exploring virtual spaces (Nogalski & Fohl, 2017; Usoh et al., 1999).
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However, the constraint to the natural walking technique is the limited
physical space, so the user is at risk of encountering the boundary wall of
physical space. Redirected Walking (RDW) technique addressed solving the
limitations of tracking space so that users can explore unlimited virtual spaces
without encountering the boundaries of physical space.

VE exploration can use waypoints and predefined paths, which provide
information about predicting the user’s future path to the programmers, as
proposed by Chen et al. (2024). The information can be effectively exploited
using predictive algorithms to change the VE based on the user’s position and
movement within the tracking space. On the other hand, reactive algorithms
can operate without presenting predefined paths, thus providing a general
solution for RDWs (Strauss et al., 2020). When the user has reached the
edge of the tracking space area when he intends to go to the location in the
virtual space, a reset technique is needed to prevent the user from leaving the
tracking space area or hitting awall in the physical space (Strauss et al., 2020).
Various reset techniques have been developed, such as Freeze-Backup, Freeze-
Turn, and 2:1-Turn (Williams et al., 2007), the use of distractors (Peck et al.,
2009) and interactive portals (Freitag et al., 2014) that aim to reset the user’s
orientation in the tracking space area.

This study implements Artificial Intelligence (AI) technology, especially
in the Reinforcement Learning (RL) framework, using machine learning
agents on VE without predefined pathways. The study aims to improve
the exploration of larger VE than PE through machine learning agent
simulations. Specifically, the study investigated the use of Warning Walls
when agents were trained to explore a VE larger than the tracking space
area. Warning Walls is a system automatically generated in VE when the
agent is detected too close to the boundary of the tracking space area to
prevent the agent from hitting the boundary of the physical wall. This feature
is commonly used in VR, such as Chaperone SteamVR (Steam Support, n.d.),
Oculus Guardian System (Guardian System | Meta Horizon OS Developers,
n.d.), and Cirio et al. (2009) proposed theMagic Barrier Tape to inform users
about the workspace boundaries. Warning Walls appear as a marker of the
reset spot, and the agent must act in the tracking space area to continue
walking in the VE. The null hypothesis in this study is that there is no
difference between using Warning Walls when the machine learning agent
learns to explore the VE space. The alternative hypothesis of this study is
that there is a difference between using Warning Walls and without Warning
Walls in the learning process of agents to explore VE.

RELATED WORK

The Redirected Walking (RDW) technique introduced by Razzaque allows
users to explore by real walking in a larger virtual space than the limited
size of the physical space (Razzaque et al., 2001). The experience of real
walking feels more natural and results in a higher sense of presence when
in a limited tracking space area (Strauss et al., 2020). RDW is generally
applied using three main gains: translation, rotation, and curvature gains.
These three gains function to manipulate translation and user rotation for
VE. Gains can be defined as how tracked real-world movements are mapped
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to the virtual environment (Steinicke et al., 2008). When gains are applied
within certain thresholds, the discrepancy between movement in the real and
virtual worlds is imperceptible (Steinicke et al., 2010). In addition to these
three essential gains, there are other gains, namely bending gains. Bending
gain is the same as curvature gain, which combines translation and rotation
but is applied to the virtual curved path (Langbehn et al., 2017). This study
does not use bending gain because VE is an open space without a predefined
pathway. Predictive RDW algorithms can be used when the user’s path in
the tracking space is known in advance (Nescher et al., 2014; Zmuda et al.,
2013). Reactive heuristic-based algorithms such as Steer-to-Center (S2C),
Steer-to-Orbit (S2O), and Steer-to-multiple-targets were developed to keep
the user in the tracking space (Razzaque, 2005). The S2C algorithm always
steers the user to the center of the tracking space area, while S2O directs the
user to walk in a circle. However, heuristic-based algorithms are designed
and rely on human intuition regarding the best way to steer the users in VE.
However, the Reinforcement Learning (RL) approach offers a data-driven
alternative (Strauss et al., 2020).

Previous literature shows the development of various RDW methods
under non-predefined pathway conditions in VE by utilizing the RL
framework. Developments such as the Steer-to-Optimal-Target (S2OT)
algorithm proposed by Lee et al. (2019), using Deep Q-Learning (DQN),
which aims to estimate targets that steer optimally based on the Q value to
avoid collisions in the path of future users. A study on RDW conducted by
Strauss et al. (2020) proposed the Steer-by-Reinforcement Learning (SRL)
algorithm. Using RL, they trained a neural network that directly determined
manipulation parameters such as translation, rotation, and curvature gain
applied based on the user’s position and orientation in the tracking space
area. The development of an RL-based RDW controller was also conducted
by Zhao et al. (2023), which used translation, rotation, and curvature gain
parameters through real-time information analysis of the tracking space area
where the user is located. Zhao et al. (2023) used the Turn-to-Furthest (T2F)
reset algorithm proposed by Chang et al. (2021) as an effort to redirect the
user to the collision area furthest from the user’s last position at the nearest
obstacles or the boundary of the Physical Environment (PE). The 2:1-Turn
reset technique (Williams et al., 2007) is the most commonly used (Zhao
et al., 2023). This technique directs the user to rotate 180◦ in real space while
rotating 360◦ in VE, thus maintaining coherence when walking in VE (Zhao
et al., 2023). In this study, we did not explicitly use any reset algorithms.

METHOD

Virtual Environment

The environment used in this simulation consists of two parts. The first part
represents the tracking space area or PE with a square shape. From the top
view, it has a red outline measuring 4×4 meters. There are Warning Walls
on each side of the tracking space boundary, which have a width of 0.5
meters. The agent can still walk inside the Warning Walls area, but if the
agent continues to walk past its outer boundary, the training episode will
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reset. The second part in the environment represents VE and is 10×10 meters
in size and square, as seen in Figure 1 (d).

Figure 1: Snapshot of the simulation of the training agent in the environment. (a) From
the agent’s point of view, the first-person view shows that the red Warning Walls are
active. (b) The top view display represents a tracking space area of 4x4 meters. (c) The
third-person view shows the back of the agent. (d) The VE top view display overlapped
the tracking space area with Warning Walls.

Target Objects

Four target objects are placed in the VE, consisting of one object placed in
the North in a static position opposite the agent’s position when the start is
started and the other three objects placed randomly and dynamically. The
position of the other three target objects will be randomly respawned when
successfully touched by the agent. Random placement aims to encourage
agents to explore all areas of VE and, at the same time, try to avoid overfitting
conditions in agents. Overfitting conditions can occur when the agent shows
optimal performance and over-masters the environment during training but
fails to adapt to new variations or conditions in the environment (Zhang
et al., 2018).

Machine Learning Agents

We used Unity’s machine learning agent (ML-Agents) toolkit version 3.0
with Python Application Programming Interface (API) version 3.9.11 and
was trained using the Proximal Policy Optimization (PPO) algorithm. The
training system was built using a Personal Computer (PC) with Intel(R)
i7-10700 specifications and a 2.90 GHz CPU with 16GB of RAM. The Unity
ML-Agents Toolkit is an open-source project that allows researchers and
developers to create simulations of environments using the Unity Editor and
interact through Python API (Juliani et al., 2020). PPO is an RL algorithm
Schulman et al. (2017) introduced to improve agent capabilities in complex
environments. PPO focuses on optimization to maximize expected rewards
based on the ratio of old and new policies. The agent (purple cube) represents



30 Natanael et al.

the user; it is placed in the tracking space area but can only see the VE.
Agents have ray-cast sensors that allow for observations within the VE, such
as tracking the position of target objects. Like those used by Strauss et al.
(2020) and Zhao et al. (2023), the state agent at t time is influenced by four
vectors st = [xt, zt, ϕt

H, ϕt
L], where xt and zt are the coordinates of the

agent in the tracking space area and ϕt
H and ϕt

L are the agent’s heading
angle and looking angle. We also increased the vector stacking value of the
agent to 3 in the Unity Editor. This means agents can observe longer changes
in a more complex and dynamic environment. After the agent observes
the environment, the agent will act. The action performed by the agent is
represented by three vectors at = [gtR, gtT, gtC], where gtR, gtT, and gtC

are the rotation, translation, and curvature gains set during time t. We used
the threshold value of each gain based on Steinickie et al. (2010), namely,
gtR ∈ [–0.2, 0.49], gtT ∈ [–0.14, 0.26] and gtC ∈ [–0.045, 0.045].

In RL, agents learn by receiving rewards from the environment as feedback
on actions taken. In general, rewards can be divided into dense and sparse
rewards. Dense rewards mean agents receive frequent and more detailed
feedback after an action. In contrast, sparse rewards mean agents receive
less feedback only after completing a particular task. Dense rewards will
make it easier for the agent to learn because he directly receives feedback,
while sparse rewards tend to cause slower training due to the lack of direct
feedback. In this study, we used dense rewards. The Agent aims to touch
the target object (red beam) after successfully touching as many randomized
target objects (green cubes) as possible. Table 1 shows that we set the system’s
value as rewards that function as a reward or punishment in the agent training
process.

Table 1: Rewards value system.

Action Reward

Touching unvisited targets 10 f
Reaching the goal after all targets have been visited 50 f
Reach the goal before all targets are visited –10f
Touching the physical wall in PE and VE –1f
Touching the wall in VE –1f
Touching the warning wall in VE –0.5f
Penalty per step –0.005f

The value of each reward in actions is determined based on previous trials
and observations. We monitored the agent’s behavior whenever we applied
a value to specific actions. Until we see the agent exhibit behavior that we
consider to be as expected. For example, with this value, the agent actively
searches for object targets and explores every part of the VE space.

This study used discrete actions on agents rather than continuous actions.
Discrete actions are a more straightforward set of actions; agents only need
to choose the direction of navigation, such as forward, backward, right turn,
and left turn. Agents do not require more complex actions such as adjusting
acceleration, velocity, maintaining balance, and others, so discrete actions are
more likely to match the agent’s condition.
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Training Simulation

The training simulation was conducted in two stages. In the first stage of
training, twelve iterations were carried out, during which the hyperparameter
value was adjusted little by little to obtain the best reward value, which
would later be used as a baseline for the next stage. The training session uses
Warning Walls as the default condition, assuming that Warning Walls are
an important component in the system, such as a warning if the user hits the
wall or goes out of the tracking space area. Then, in the second stage, training
was continued for ten iterations on conditions A (with Warning Walls) and
B (without Warning Walls) based on the previous baseline. Generally, the
training configuration agent values used during the first training process
are the Number of Layers: 2, Number of Hidden Units: 128, Maximum
Steps: 500,000 steps, Time Scale: 1, and activating Normalize Network and
Normalize Reward. Normalization can ensure that the agent learning process
becomes more stable and effective because it can curate problems related
to different scale values (Reinforcement Learning Reward Normalization |
Restackio, n.d.). Other training configuration value settings can be seen in
Table 2.

Table 2: Hyperparameter values in the agent’s training configuration.

Agent Name Hyperparameter Values

Batch Size Buffer
Size

Learning
Rate

Beta Epsilon

MLagent_DisTunA1 128 10240 0.0003 0.005 0.2
MLagent_DisTunA2 512 20480 0.0003 0.005 0.2
MLagent_DisTunA3 512 40960 0.0003 0.005 0.2
MLagent_DisTunA4 32 10240 0.0003 0.01 0.2
MLagent_DisTunA5 64 10240 0.0003 0.01 0.2
MLagent_DisTunA6 128 10240 0.0003 0.01 0.2
MLagent_DisTunA7 32 20480 0.0003 0.01 0.2
MLagent_DisTunA8 64 20480 0.0003 0.01 0.2
MLagent_DisTunA9 512 10240 0.0003 0.01 0.2
MLagent_DisTunA10 64 10240 0.0001 0.01 0.2
MLagent_DisTunA11 64 10240 0.0003 0.01 0.3
MLagent_DisTunA12 64 10240 0.0003 0.01 0.1

Batch Size is the number of experiences in each iteration of gradient
descent on the PPO trainer type, Buffer Size is the number of experiences
to collect before updating the policy model, and Learning Rate is the Initial
learning rate for gradient descent. Corresponds to the strength of each
gradient descent update step. Beta regulates how much the agent depends
on their knowledge compared to exploring new possibilities. Epsilon can
be interpreted as an agent’s level of curiosity, determining how often he
tries new things compared to continuing to do a known strategy (Training
Configuration File - Unity ML-Agents Toolkit, n.d.).
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Long Short-Term Memory (LSTM) is a neural network that handles
sequential data and maintains temporal context (Hochreiter & Schmidhuber,
1997). LSTM can remember information over a long period, making it more
effective in processing and predicting data with sequence dependencies such
as text, voice, and time series. In this study, we also tested using LSTM based
on baseline iteration using varying values on Memory Size and Sequence
Length, see Table 3.

Table 3: Hyperparameter value for agent’s memory.

Agent Memory Size Memory
Sequence Length

Iteration-1 32 64
Iteration-2 64 64
Iteration-3 64 32
Iteration-4 128 32
Iteration-5 256 128

Figure 2: The training simulation snapshot shows the agent’s walking trail lines in
the tracking space area (red line) and the trail lines in the VE area (blue line), where
the agent can walk in the VE, which is larger than the tracking space area without a
predefined pathway. (a) The training process in Condition A where the Warning Walls
(represented by a transparent red rectangle) will be activated when the agent is in a
position close to the limit of the tracking space area. (b) Warning Walls are not activated
even though the agent is within the boundary of the tracking space.

Furthermore, ten training iterations are conducted in two conditions in the
second stage. In Condition A, Warning Walls will be automatically activated
on the VE if the agent is in a margin area of 0.5 meters from each side of the
tracking space boundary. In Condition B, all Warning Walls are disabled, so
they do not appear even if the agent is in a margin area of 0.5 meters in the
tracking space.
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RESULT

The results of the first stage of training simulation obtained from
TensorBoard showed that the number of cumulative rewards in the fifth
(MLagent_DisTunA5) training session was the highest compared to eleven
other training sessions with a total cumulative reward value of 291,103 or a
mean reward value of 29,110. Thus, agent parameter five was chosen as the
baseline for further training testing in Conditions A and B, see Figure 3 and
Table 4.

Figure 3: The results of the training in the first stage on TensorBoard.

Table 4: The results of mean reward value for the first stage of training agents.

Steps

Agent/
Reward
Value

50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Mean
Reward
Value

1 -0.872 8.836 14.240 17.909 23.519 27.116 28.274 30.556 32.178 33.608 21.536
2 -1.024 2.741 8.690 11.870 14.763 17.107 20.720 23.115 23.604 30.324 15.191
3 -1.367 -0.993 0.666 4.737 7.307 11.237 12.721 14.481 17.137 16.987 8.291
4 0.688 9.503 16.703 18.017 20.872 24.399 27.442 32.057 34.201 35.535 21.942
5 -0.281 11.548 16.299 25.787 29.326 33.697 35.308 42.981 45.477 50.960 29.110
6 -0.972 6.043 15.730 19.125 21.693 25.554 26.437 30.217 32.110 39.640 21.558
7 -1.041 2.288 6.924 12.854 15.656 18.067 18.448 20.218 20.376 21.669 13.546
8 -1.288 2.119 7.190 11.384 16.415 20.722 23.724 27.527 31.796 34.226 17.381
9 -0.969 8.155 15.616 17.378 22.769 26.917 25.897 28.315 29.301 30.586 20.396
10 -0.100 9.690 18.990 21.398 27.028 28.794 28.692 31.794 31.649 36.143 23.408
11 0.988 12.796 16.577 22.498 30.367 36.440 32.922 36.109 36.219 37.485 26.240
12 -1.008 2.608 7.756 12.716 15.847 18.471 19.542 22.713 24.431 29.158 15.223

Based on the baseline iteration, the results in five iterations of the test
showed that the Mean Reward Value collected by the agent with LSTM
(5a-5e) was lower than those of training agents without LSTM or baseline.
Therefore, in this study, we did not use memory on the agent for the next
testing stage, see Table 5.



34 Natanael et al.

Table 5: The results of agent training with LSTM.

Steps

Agent/
Reward
Value

50k 100k 150k 200k 250k 300k 350k 400k 450k 500k Mean
Reward
Value

5a -1.269 -0.166 4.527 11.517 13.388 17.614 16.583 19.726 19.782 20.655 12.236
5b -0.001 7.104 13.731 14.489 19.418 22.295 24.900 22.606 24.938 24.079 17.356
5c -0.689 9.060 11.952 16.137 15.921 18.181 22.026 23.123 24.474 23.297 16.348
5d -0.899 9.522 13.878 17.274 18.492 21.426 25.796 27.267 26.335 31.901 19.099
5e -0.892 10.465 12.893 15.701 17.996 18.918 22.463 25.807 25.259 33.430 18.204

Before statistical analysis, we collected data from 10 training iterations
from the Tensorboard dashboard: Walltime and Mean Reward Value at
every 50,000 steps to a maximum of 500,000 steps (10 summary frequency).
Walltime data is obtained in Unix time format; for example, 1733722346,
converted into a human-readable time format, means 12/9/2024 5:32:26 AM
UTC. We converted all Walltime data into a human-readable format, then
adjusted to the location of the time zone in which the study was conducted
(UTC + 8). After that, we calculate the delta time in minutes, the difference
in the time of recording the summary frequency. Then, we add up all the delta
times to get the total training time and convert it into units of hours in each
iteration. Then, we also calculate the mean reward value of each iteration,
see Table 6. This is important to ensure that the data is the same as displayed
on the Tensorboard dashboard.

Table 6: Calculation data delta time and mean reward Condition A and B of the second
stage.

Delta Time Hour Mean Reward Value

Iteration Condition A Condition B Condition A Condition B

1 4.407 5.852 24.974 21.645
2 3.967 4.386 24.473 23.518
3 3.918 4.536 22.386 22.733
4 3.894 4.552 20.097 21.610
5 4.052 4.167 21.417 26.787
6 4.239 4.009 24.293 25.694
7 4.219 4.086 17.820 21.139
8 3.981 3.996 18.500 22.341
9 4.203 4.155 26.689 20.288
10 4.253 4.053 21.998 27.146

Next, we perform descriptive statistical analysis calculations. Start by
conducting a normality test on the DeltaTime variable and Mean Reward
Value in Conditions A and B to determine whether the data distribution is
normal. The results of the DeltaTime variable normality test in Condition
A based on Kolmogorov-Smirnov (K-S) showed a value of p = 0.200
(p > 0.05) and Shapiro-Wilk (S-W) showed a value of p = 0.362 (p > 0.05).
Meanwhile, the results of the normality test on Condition B based on K-S
showed a value of p= 0.027 (p < 0.05), and S-W showed a value of p= 0.001
(p < 0.05). Thus, the DeltaTime data is normally distributed in Condition A
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but not normally distributed in Condition B. The results of the normality test
of the Mean Reward Value variable on Condition A based on K-S showed
a value of p = 0.200 (p > 0.05), and S-W showed a value of p = 0.837
(p > 0.05). The results of the normality test of the Mean Reward Value
variable for Condition B based on K-S showed a value of p = 0.200
(p > 0.05), and S-W showed a value of p = 0.201 (p > 0.05). Thus, the Mean
Reward Value data is normally distributed in both Condition A and B.

Based on the normality test results, the statistical analysis was continued
by conducting a non-parametric test on the DeltaTime variable and a
parametric test on the Mean Reward Value variable. The results obtained in
the non-parametric test using Mann-Whitney U show Asymp. Sig. (2-tailed):
p= 0.199 (p > 0.005). Thus, the results state no significant difference between
Condition A and Condition B for the DeltaTime variable.

The results of the parametric test on the Mean Reward Value variable for
Condition A and Condition B using the Independent Samples T-Test showed
that the homogeneous data (Levene’s Test) with a value of p = 0.639 (p
> 0.05) and a value of Sig. (2-tailed): p = 0.402 (p > 0.05). Thus, the
results show no significant difference between the Mean Reward Value in
Condition A and Condition B.

DISCUSSION

The results of the statistical analysis test in this study showed no significant
difference between the time variables and rewards for Condition A (using
Warning Walls) and Condition B (without Warning Walls). These results also
follow visual observations made during the training process. The agent can
walk to target objects that have randomly placed positions within the VE.
Although agents still hit the warning walls quite often or get out of the
tracking space area, they can also learn to walk in the VE, which is larger
than the tracking space area. The agent learned how to perform a reset like
2:1-Turn without using an explicit algorithm to continue walking in the VE.
Through this study, we obtained a fascinating finding: Machine learning
agents can learn under conditions without visualizing Warning Walls in VE.
We believe that exploring VEwithout warning walls is impossible for humans
because humans rely on their vision to determine physical areas’ boundaries
in virtual spaces.

CONCLUSION

This pilot study aims to improve exploration in VE spaces that are larger in
size compared to PE through machine learning agent simulations by using
redirected walking techniques. The VE space is conditioned as an open space
without a predefined pathway so agents can walk freely. The simulation
was conducted by adding Warning Walls, which act as a warning system
to prevent agents from hitting the boundaries of the tracking space area. The
study results show that machine learning agents can learn to explore two VE
conditions with and withoutWarningWalls. There is no significant difference
in usage; thus, the null hypothesis in this study is acceptable.
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