Metaverse, Virtual Environments and Game Design, Vol. 178, 2025, 38-48 AH FE
https://doi.org/10.54941/ahfe1006343 |hternational

Impact of Cognitive Load on Learning in
Immersive Virtual Reality Environments

Francesca Massa', Sara Buonocore'!, Raffacle De Amicis?,
Andrea Tarallo?, and Giuseppe Di Gironimo'

"Deparment of Industrial Engineering, University of Naples Federico Il, 80125 Naples,
Italy
2Q0regon State University, USA

ABSTRACT

The present work focuses on the use of Immersive Virtual Reality (IVR) to train users
by immersing them in safe and controlled Virtual Environment (VE) and enabling
them to learn by doing. Particular attention is given to adaptive VR-training systems
that are capable of dynamically adjusting the training experience based on user’s
performance and cognitive state. Considering this, a new methodology for such
systems is proposed, that is crafted on the Cognitive Theory of Multimedia Learning
(CTML). This methodology aims to help instructors to understand how to adapt
VR-training systems to users during their experience in VEs, leading to effective
Learning Outcomes and avoiding a high Cognitive Load (CL). This human factor plays a
critical role in mediating the relationship between Presence, Immersion, and Learning
Outcomes, as the VE generates a CL to users. To have a deeper understanding,
factors influencing CL in VEs are presented and relative solutions are proposed. It is
our understanding that adaptive VR-training systems, their design, architecture, and
attributes, can pave the way to new research directions and that the new methodology
presented in this paper will be supportive.

Keywords: Cognitive load, Human factors, Virtual reality, Learning outcomes, Adaptive
VR-training system

INTRODUCTION

Virtual Reality (VR) is a computer-generated simulation or recreation of an
environment with scenes and objects that appear to be real (Baker, 2024). To
date, when talking about VR, frequently is possible to find the expression
“Immersive Virtual Reality (IVR)”, which refers to “the combination of
software and hardware systems (VR technology) designed to create a
complete sensory illusion of being immersed in a different environment”
(Han, Zheng, e Ding, 2021). IVR is defined by two key features: “Immersion”
and “Presence”. Immersion refers to the objective property (devices, graphics,
sounds, etc.) of VR technology provides allowing users to establish deeper
connections with the Virtual Environment (VE) (Berkman e Akan, 2024),
while Presence refers to the subjective/psychological experience of the user
resulting from being in the VE (Berkman e Akan, 2024). Furthermore,
the expression IVR is often preceded by “low” or “high” to describe

© 2025. Published by AHFE Open Access. All rights reserved. 38


https://doi.org/10.54941/ahfe1006343

Impact of Cognitive Load on Learning in Immersive Virtual Reality Environments 39

different levels of immersion provided by VR technology. For example, low
IVR involves using a standard two-dimensional monitor and a keyboard
and/or a mouse for interacting, while high IVR requires a Head-Mounted
Display (HMD).

Currently, it is commonly understood that when the expression IVR is
used, it refers to high immersion VR. Based on this general understanding, in
our research, we use the term IVR specifically to denote high immersion VR.
More precisely, our work focuses on a particular subclass of VR in which
users are immersed in and able to interact with the VE, thus they are isolated
from external visual cues and uncontrolled stimuli from their own physical
world, allowing them to experience a highly engaging, interactive setting.

Due to the widespread availability of affordable software and hardware
tools, IVR is rapidly advancing, and it is used for numerous purposes thanks
to its flexibility. In the current study, we focus on the use of IVR to train users
by immersing them in safe and controlled VE and enabling them to learn
(i.e., the process of acquiring skills and knowledge) by doing, thus improving
traditional learning methodologies because users will be an active participant
(Jensen e Konradsen, 2018; Zahabi e Abdul Razak, 2020; Patle et al., 2019).

In scientific literature, it is commonly believed that high IVR enhances
Learning Outcomes (Parong et al., 2020) due to increased physical and
mental Immersion, interaction and imagination, fostering a strong Sense
of Presence to the user. Nevertheless, conflicting results can be found.
While some research suggest that high IVR improves Learning Outcomes
(Markowitz, 2018; Cabrera-Duffaut, Pinto-Llorente, e Iglesias-Rodriguez,
2024), other report no significant difference (Aggarwal et al., 2019;
Dhimolea, Kaplan-Rakowski, e Lin, 2022), or even worse outcomes
(Makransky, Terkildsen, e Mayer, 2019; Lin, Wang, e Suh, 2020). The
reasons for these discordant results are explained by the Cognitive Theory
of Multimedia Learning (CTML) (Mayer, 2005); indeed, while Immersion
and Sense of Presence can enhance Learning Outcomes, excessive CL
may hinder them. Thus, managing CL is crucial for optimizing Learning
Outcomes in the VE, as high CL negatively impacts the User Experience
(Han, Zheng, e Ding, 2021).

In light of this, our research work presents a new methodology for adaptive
VR-training scenarios, that is crafted on the CTML, and aims to help
instructors to understand how to adapt such systems to users during their
experience in the VE, leading to effective Learning Outcomes and avoiding a
high CL.

Thus, the paper is structured as follows: a section is dedicated to the
theoretical background of what CL is, and the theories behind it. Then,
factors influencing CL in VEs are deepened and relative solutions are
explained, and particular attention is given to adaptive VR-training systems.
Finally, the new methodology is presented. Conclusion and Future Direction
are given in the last section.

THEORETICAL BACKGROUND

What is Cognitive Load? According to Sweller’s Cognitive Load Theory
(CLT) (Sweller, 1988), CL is defined as the amount of mental effort required
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by a user’s Working Memory (WM) to process and assimilate information
during learning. This theory assumes that the capacity of WM is limited
and that excessive demand for cognitive resources can compromise Learning
Outcomes.

This perspective finds its theoretical basis in the model of memory
proposed by Atkinson and Shiffrin (Atkinson, 1968), which divides human
memory into three main components: Sensory Memory (SM), Working
Memory (WM) and Long-Term Memory (LTM). SM acts as a preliminary
filter for incoming sensory information (visual, auditory, tactile, etc.) briefly
retaining it. Only a fraction of this information is selected and transferred to
WM for further processing. WM (or Short-Term Memory) processes small
amounts of information and discards or categorizes it for storage in LTM.
The latter has an unlimited storage capacity and serves as the repository
for information retained over extended periods, often spanning years or
even decades. LTM works with WM to retrieve information and store it in
structures. The more these patterns are used, the more they develop and the
easier they are to remember. Sweller uses this model to explain the concept
of CL, pointing out that WM is a bottleneck in information processing.
When the information load exceeds the WM capacity, Learning Outcomes
are ineffective.

To address this problem, in his theory, Sweller distinguishes three types
of CL: Intrinsic, Germane and Extraneous Load. Intrinsic load refers to the
mental effort required to understand, learn and select new information in
order to organize it in WM. It depends on the complexity of the information,
and the user’s prior knowledge. Germane load is the required CL to process
incoming stimuli in depth in the WM and store them effectively in LTM. This
requires the selection of relevant information, the organization of a coherent
mental model of the information and the integration of this model with prior
knowledge in LTM. Unlike Intrinsic and Germane load, which are essential
for learning, Extraneous load refers to processing non-essential information,
such as irrelevant information, excessive details or distractions from outside.
In light of this, the goal of effective Learning Outcomes is to manage the
Intrinsic load, reduce the Extraneous load, and optimize Germane load in
order to improve knowledge acquisition.

CTML: Starting from Sweller’s CLT, also Mayer’s CTML (Mayer, 2005)
(Figure 1) is based on the concept of limited capacity of WM, integrating
Paivio’s Dual-Channel Model (Clark e Paivio, 1991) which posits that
information is processed through two distinct channels: one visual/pictorial
and the other verbal.

CTML provides a useful theoretical framework for the design of immersive
experiences in VR, emphasizing the need to optimize CL to facilitate
Learning Outcomes. Thus, the theory allows to create experiences that
optimally balance engagement and CL, maximizing long-term learning and
memorization.

Therefore, it is important to deepen what are the factors that influence the
user’s CL in VEs and understand how to handle them.
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Figure 1: Cognitive theory of multimedia learning (CTML).

FACTORS INFLUENCING COGNITIVE LOAD IN VIRTUAL

ENVIRONMENTS

Table 1: Factors influencing cognitive load in virtual environments.

Factors Influencing CL
in VEs

Description

Task Complexity Design

Virtual  Environment’s
Design

Feedback Mechanisms

User Prior Experiences
and Familiarity

User Interface Design

Users’ Emotion

More complex tasks requiring precise hand movements
or simultaneous actions (e.g., grabbing, rotating, and
placing objects) consequently increasing Intrinsic load
(Han, Zheng, e Ding, 2021; Tugtekin e Odabasi, 2023).
If the design presents too much complex information at
once, users may feel overwhelmed. In addition, if the VE is
too passive, users do not actively process the information.
Finally, confusing design, excessive visual elements or
unintuitive interactions increase the Extraneous load
(Steinhaeusser et al., 2022).

An insufficient feedback mechanism may lead users
to uncertainty about their interactions and a constant
evaluation of their actions, consequently increasing
Germane and Intrinsic load (Zhao e Cen, 2024).

Users familiar with VR technology may experience lower
CL compared to new users, because the latter can shift
their attention from the learning content to the technology
itself (Birbara e Pather, 2021), consequently increasing
Germane and Extraneous load.

Physical discomfort related to the use of VR technology
(such as HMD, controller, biosensors, etc.) during
interactions in VEs may increase Extraneous load, as users
may become distracted by the difficulty of using such
technologies (ergonomics and comfort). Furthermore,
the choice of input devices (e.g., handheld controllers
vs. gesture recognition) may affect how naturally users
interact with virtual objects, impacting Extraneous load
(Duan et al., 2024).

Excessive performance anxiety or emotional overload
can increase Extraneous load (Linares-Vargas e Cieza-
Mostacero, 2024).
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Discussion. Considering factors influencing CL in VEs described in
the Table 1; to avoid CL from negatively impacting the User Experience,
important precautions should be taken. As mentioned, the Sense of Presence
and Immersion make users feel involved in the VE and this should lead
to greater Learning Outcomes, only if users are not experiencing an
excessive CL. The latter is the key to controlling the relationship between
Sense of Presence, Immersion and Learning Outcomes, as the VE generates a
CL to users. Considering this, managing CL is crucial for optimizing Learning
Outcomes in the VE, as high CL negatively impacts the User Experience.

Therefore, it is recommended to make sure whether the user is familiar
with VR technology (Parong e Mayer, 2021). To prevent users from
experiencing difficulties in its use, they must be introduced to this technology,
giving them the time to familiarize themselves with it through a pre-
training phase. In principle, that should help users to better manage WM,
since there are more resources to process the learning content, and greater
consolidation of the information in LTM. In addition, in order for users
to have a comfortable experience, it’s important to ensure that the HMD
is well-balanced on the users’ head and adjusted to allow users to see
clearly (Ito et al., 2021). Also, the implementation of alternative input
methods (e.g., gesture recognition, voice commands) to reduce controllers’
dependency can decrease Extraneous load, as the user is not distracted in
remembering how to use controllers, making interaction with the VE as
natural as possible. Furthermore, in the VE, information must be organized
in an intuitive and natural way, object manipulation must be simplified by
allowing users to perform actions in sequence, without combining too many
elements (text, sound, animation) at the same time, thus not cluttering the
SM and consequently the WM. Also, it is required to provide real-time visual
highlights (e.g., glowing edges, ghost previews) to indicate valid placements
of objects and the use of haptic feedback to confirm successful actions and
guide user movements. This should help users to better manage SM. Finally,
in parallel to these “technical” aspects, it’s also recommended to understand
user’s emotional state because if user lives an excessive performance anxiety
or emotional overload, these can increase Extraneous load.

COGNITIVE LOAD, LEARNING OUTCOMES AND ADAPTIVE
TRAINING SYSTEM

To date, the precautions presented in the previous section are not sufficient
to effectively control the user’s CL during its experience in the VE. Most
studies rely on a generalized approach to training, applying the same
VR-training system to all users without accounting for individual differences
(Zahabi e Abdul Razak, 2020). Although this non-adaptive method is
easier and cheaper to implement, it has several limitations. Users often
experience disengagement, boredom and high CL, which can lead to
ineffective Learning Outcomes. Furthermore, the lack of customization leads
to excessive training time, reducing overall efficiency. In contrast, adaptive
VR-training approaches, which adjust the training process according to
users’ capabilities, performance, and needs, have been shown to improve



Impact of Cognitive Load on Learning in Immersive Virtual Reality Environments 43

engagement, optimize Learning Outcomes and increase user retention, as
they prevent users from feeling overwhelmed by the VE (Skola, Tinkova,
e Liarokapis, 2019; Lucas-Pérez et al., 2024). An adaptive VR-training
system is capable of dynamically adjusting the training experience based on
the user’s performance and cognitive state. Unlike non-adaptive VR-training
systems, which require all users to follow the same steps regardless of their
progress, an adaptive VR-training system is capable to modify key elements
of the training in real time. These elements may include the difficulty level of
tasks, the type and frequency of stimuli presented, and the pace of instruction.

Taking into account the framework of adaptive VR-based training (Zahabi
e Abdul Razak, 2020) and considering subjective and objective measurement
to measure user’s CL, we propose a methodology that help instructors to
understand how adapt training system to user during its experience in VEs
leading to effective Learning Outcomes (Figure 2).

PRIORTO
TRAINING

DURING AFTER
TRAINING TRAINING

OBJECTIVE MEASURES SUBJECTIVE MEASURES
- Performance Measures - Performance Measures
- Physiological Measures - Physiological Measures

- Profile Information

- Physiological Measures
at rest

/ real-time \ l

Figure 2: Methodology of adaptive VR-training system.

Firstly, before starting training, the instructor should collect information
on the users’ profile, such as their familiarity with VR technology, previous
experience with VEs, any sensitivity to VR-related effects, such as a tendency
to experience headaches, dizziness, or motion sickness, and their learning
style. In addition, the instructor can monitor users’ CL and their emotional
state at rest by means of proper biosensors. This preliminary evaluation helps
the instructor to understand how to set adaptive variables, such as content
and feedback.

During training, performance measurements, such as task performance
and physiological measures, can be collected through objective measures.

Objective Measurement includes task performance and physiological
measurements. Task performance encompasses various quantifiable metrics
such as error rate and type, completion time, task success rate, and
efficiency of movements. Physiological measurement, such as users’ neural,
cardiovascular, and electrodermal activity, respiration and eye movements,
can be calculated in real-time using biosensors during IVR training (Guillen-
Sanz et al., 2024). Users’ brainwave activity and mental workload on the
scalp can be effectively measured with EEG headsets (Birbara e Pather,
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2021). About cardiovascular activity, the most common parameters are
Heart Rate (HR) and Blood Pressure (BP), which can be measured using
ECG, and which provide indications of a user’s emotional state and physical
arousal (Parong et al., 2020). EDA (Electrodermal Activity) or Galvanic Skin
Response (GSR) is a measurement of electrodermal conductance and eccrine
sweat gland activity. Sensors are usually placed on the body areas where
most eccrine glands can be found, such as the hands, feet, and nape (Parong
e Mayer, 2021). The respiratory rate is usually used as a measure of user
relaxation or excitation, and it is monitored with belts placed around the
abdomen or chest to measure bodily movements and their magnitude. Finally,
eye trackers are used to track eyeball movement and pupil size (Shi, Du,
e Worthy, 2020) indicating the levels of users’ attention.

Thus, objective measures help the instructor to understand how to set
adaptive variables in real-time during users’ training.

After finishing training, instructors can collect users’ opinions about their
experience in VEs through subjective measures.

Subjective Measurement includes questionnaires, self-reports, or
observations to collect data after users end IVR training. The most popular
questionnaire is the NASA-TLX (NASA Task Load Index). It is based
on six dimensions to assess workload: mental load, physical load, time
load, performance, effort, and frustration. In addition, there are other
questionnaires, such as Multi-dimensional rating-scales, and subjective
Workload Assessment Technique (SWAT) that were widely used for self-
measurement of CL (Han et al., 2021; Zhao et al., 2020; Armougum et al.,
2020; Gloy et al., 2022; Mahmoudzadeh, Afacan, e Adi, 2021).

At the end of the training session, once the performance measurements and
users’ opinions have been collected, the adaptation can be carried out again,
if deemed necessary, in a second session of training.

This closed-loop human-in-the-loop system has the potential to keep
the user in the optimal cognitive and performance state during training in
VEs. By continuously monitoring user responses, the VR-training system
can dynamically adjust task difficulty, pacing, and feedback mechanisms
to align with the individual’s CL and skill level. This adaptive approach
helps prevent both cognitive overload, which can hinder learning and
cause frustration, and cognitive underload, which may lead to boredom
and disengagement (Thomay et al.,, 2023). Real-time adjustments based
on objective performance data, such as error rates, reaction times, and
physiological indicators, ensure that training remains both effective and
engaging. Biometric data can provide further insights into user attention
and stress levels, allowing the system to adjust interactions accordingly. This
adaptation enhances users’ Sense of Presence, Immersion, promotes sustained
attention, and maximizes retention of learned skills. Additionally, by
responding to fluctuations in cognitive demand, the system optimizes training
efficiency, reducing unnecessary repetition while reinforcing challenging
concepts. Such an intelligent, data-driven framework fosters deeper learning
and skill acquisition while minimizing fatigue. Ultimately, an adaptive VR-
training system can significantly improve User Experience, making training
more efficient, personalized, and impactful. It is our understanding that such
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adaptive VR-training systems, their design, architecture, and attributes, can
open up an exciting new research path for the future.

CONCLUSION AND FUTURE DIRECTION

In this work, the focus was on the use of IVR to train users by immersing
them in safe and controlled VEs and enabling them to learn by doing,
also considering how determinant can be the CL on User Experience, and
its relationship with Immersion and Sense of Presence. Particular attention
is given to adaptive VR-training systems that are capable of dynamically
adjusting the training experience based on the user’s performance and
cognitive state. Unlike non-adaptive VR-training systems, which require all
users to follow the same steps regardless of their progress, an adaptive VR-
training system is capable to modify key elements of the training in real
time.

In light of this, a new methodology for such systems was presented that
is crafted on the CTML (Mayer, 2005). This new methodology can help
instructors to understand how to adapt VR-training systems to users during
their training in the VEs leading to effective Learning Outcomes and avoiding
high CL. This human factor plays a critical role in mediating the relationship
between Presence, Immersion, and Learning Outcomes, as the VE generates
a CL to users. To have a deeper understanding, factors influencing CL in
VEs were presented and relative solutions were proposed. It is evident that
adaptive VR-training systems, their design, architecture, and attributes, can
pave the way for new research directions and that the new methodology
proposed in this paper will be supportive. Having the potential to be applied
in various industrial contexts, the adoption of our methodology for real use
cases is already on progress in the frame of GURU project. The latter’s goal
is to revolutionize the training of workers in High-Risk Environments, such
as those with confined spaces, through the development of an adaptive VR-
multisensory system. Considering the methodology proposed in this work,
the project aims to develop a system that personalizes dynamically training
based on performance and physiological data of the user, keeping the user
in an optimal cognitive state, resulting in more efficient Learning Outcomes
and safer workplace behaviors.
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