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ABSTRACT

In this paper, we present a pipeline and framework for the Intelligent Immersive
Learning environment for Programming Robotics Operations (IL-PRO), a novel
Al-based approach to assess and enhance learner capabilities in an immersive virtual
reality (VR) environment. By integrating telemetry data (both continuous and discrete)
and speech data, the IL-PRO pipeline evaluates users’ motor skills and cognitive
understanding to deliver personalized, real-time feedback that links their conceptual
understanding with motor skill performance. Telemetry data captures precise physical
human-system interactions which are processed and analyzed using Machine Learning
(ML) tools to capture and rate motor skill capabilities, while speech data is analyzed
using Natural Language Processing (NLP) techniques in concert with a Large Language
Model (LLM) to simultaneously assess comprehension and task-related knowledge.
These insights are then integrated and used to provide feedback and adapt the learning
environment dynamically, tailoring tasks and modules to the learner’s specific needs
and progress. To demonstrate the feasibility of this approach, we apply the pipeline
to a VR task focused on robot acceleration, which emphasizes how motor skills
and cognitive understanding work together when learning about inertia in industrial
robotic arms. This use case illustrates the pipeline’s comprehensive workflow: data
collection, multimodal processing of telemetry and speech using machine learning and
Al, integration of cognitive and physical insights, and generation of adaptive, real-time
feedback. The IL-PRO pipeline framework advances the development of immersive
learning systems, enables research on how users combine motor skills with cognition,
and enhances skill acquisition in applied training contexts such as robotics.

Keywords: Immersive learning, Artificial intelligence, Machine learning, Large language
models, Multimodal analysis, Adaptive feedback systems

INTRODUCTION

The rapid advancement of robotics and automation is transforming
architecture,  engineering, manufacturing, and other industries,

© 2025. Published by AHFE Open Access. All rights reserved. 32


https://doi.org/10.54941/ahfe1006372

An Al-Based Adaptive Pipeline for Automated Feedback in Inmersive Robotics Learning 33

fundamentally reshaping their operations. As a result, the demand for
skilled professionals is rising at an unprecedented rate (Bock & Linner,
2016; Garcia de Soto et al., 2022). Traditional robotics training faces
several significant challenges that hinder effective skill acquisition. One of
the primary obstacles is the high cost and limited availability of physical
robotics equipment, making it difficult for many students to gain hands-on
experience. Safety risks associated with physical machinery training present
another challenge. Industrial machinery and robots, for example, require
careful handling due to their moving parts and the potential for unexpected
malfunctions. Training on real machinery without prior experience can lead
to accidents or damage to expensive equipment. This restricts the extent to
which students can experiment freely, thereby limiting the learning process.
Other traditional classroom methods often rely heavily on lectures and
textbooks, which may not effectively convey the hands-on skills required
to operate and troubleshoot physical systems. Additionally, many existing
training programs lack interactivity and adaptability, making it difficult to
cater to learners with diverse backgrounds and skill levels.

To address these limitations, we introduce the Intelligent Immersive
Learning environment for Programming Robotics Operations (IL-PRO),
an innovative framework that leverages adaptive learning methodologies,
immersive technologies, and game-based learning to enhance education
through an adaptive immersive learning pipeline. IL-PRO minimizes the
need for physical robotics hardware, reducing financial constraints and
safety concerns while improving accessibility. The framework integrates
artificial intelligence (Al), including machine learning (ML) and natural
language processing (NLP), to automate task delivery and provide real-
time, personalized feedback based on learners’ progress. This ensures that
students receive tailored guidance and reinforcement, optimizing the learning
process. A key component of IL-PRO is virtual reality (VR), developed using
the Unity game engine, which allows for seamless integration of physics-
based interactions, realistic simulations, and dynamic learning environments.
Through VR simulations, students can operate and program virtual robots,
interact with realistic models of robotic systems, and practice troubleshooting
techniques in a controlled yet dynamic setting. This approach enhances
hands-on learning without the risks and limitations associated with physical
machinery. IL-PRO leverages gamification principles, such as task-based
challenges, achievement rewards, and interactive problem-solving scenarios,
to enhance engagement and motivation. By integrating these elements, the
framework encourages learners to explore, experiment, and master complex
robotics concepts. This multi-faceted approach aims to revolutionize robotics
education by providing a scalable, safe, and immersive learning experience.
Through Al-driven personalization, immersive VR environments, and
gamified learning strategies, IL-PRO equips students with the skills and
confidence needed to excel in robot operations across various industries.

MOTIVATION AND RELATED WORK

The general field of robotics involves operators and engineers in problems
that arise through locomotion. These problems arise whether one is
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concerned with the movement of a single robotic arm or coordination of
movement among multiple robotic systems. Early lessons in planning and
controlling movements of robotic systems require students to work toward
an integrated understanding and facility with details of motor performances
and their own conceptual understanding. Lack of integration of the two can
lead to bad decision making and poor performance in practice.

As a result, the design of learning experiences in robotics must reflect
this fact: successful operation and control of robotic systems ultimately
hinges on the operator’s integration of information from multiple sources—the
actions they take, their perception of the results of those actions, and their
changing understanding. Initially focused on improving performances of
pilots, one helpful framework for designing such learning experiences derives
from ecological psychology (Gibson, Olum & Rosenblatt, 1955; Gibson,
1977; Gibson, 1979). Within the ecological approach, researchers adopt a
tripartite view of learning and performance, emphasizing what are called
cycles of action-perception and cognition (Taylor, 2010). Students learn by
engaging in cycles of action and perception within a specified environment
in order to develop new ways of thinking and new solutions to complex
movement problems. Learning by doing in this way means students must have
opportunities to learn by doing, and to observe the effects of their interaction
with the environment.

This has several implications for learning design in the context of
robot control. First, in cases where operators or engineers directly
control the movement of a robotic system, it suggests that practice and
development of complex motor skills are insufficient on their own. Likewise,
conceptual understanding of physics divorced from one’s movement solutions
is also insufficient. Instead, the ecological approach to teaching and
learning robotics control naturally emphasizes integration of conceptual
understanding and motor solutions (Taylor, 2010). It also assumes that the
two bodies of knowledge can inform one another and aid student learning.
Consistent with constructivist and embodied theories of learning, students’
movement solutions can inform conceptual understanding (Abrahamson &
Sanchez-Garcia, 2016). The converse is also true. Students’ conceptual
understanding can be leveraged to inform one’s movement solutions.

In addition to its use of an ecological framework for teaching and
learning, IL-PRO’s learning design also incorporates aspects of Dynamic
Systems Theory which conceptualizes learners as adaptive systems capable of
exploring and mastering complex tasks through iterative discovery. This view
is consistent with the action-perception-cognition cycles of behavior that are
central to ecological approaches. The dynamic systems perspective shapes
the design of learning tasks to encourage exploration, adaptation, and the
incremental mastery of skills. By also aligning with contemporary theories of
personalized and immersive learning, IL-PRO offers a dynamic educational
experience tailored to the unique needs and growth of each learner.

This combined ecological-systems theory approach to learning robot
control is novel for the field. The ecological-systems theory approach also
guides the design and affordances of the IL-PRO platform. In particular,
the ecological-systems theory approach to learning motivates development
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of immersive VR experiences that are instrumented to track both students’
movement solutions as well as their conceptual understanding.

To analyze a participant’s motor performance, telemetry data, such
as the digital arm’s positioning and configurations, can be used in
immersive environments to evaluate and enhance motor skills. Research has
demonstrated the effectiveness of telemetry in providing real-time feedback
during skill acquisition, particularly in medical VR training simulators, where
dynamic time series classification has been used for scoring and assessment
(Vaughan & Gabrys, 2020). Machine learning algorithms have also been
applied to telemetry data to predict skill levels and personalize training
interventions, with studies highlighting its role in detecting fine motor skill
development and creating adaptive learning environments (Polsley et al.,
2022). Additionally, integrating telemetry data with other modalities, such
as speech and cognitive assessments, has shown promise in offering a
comprehensive evaluation of both motor and cognitive skills. For instance,
a fully immersive VR system for skull-base surgery training was developed
to combine multimodal data, including motion and force telemetry, to assess
surgical skills and provide tailored feedback (Munawar et al., 2024). With the
rise of Generative Al and Large Language Models (LLMs), Natural Language
Processing (NLP) is transforming education by enabling adaptive learning
through personalized feedback, Intelligent Tutoring Systems (ITS), and
discourse-driven learner interactions (Grenander et al., 2021). Traditional
ITS have faced limitations in adaptability due to their reliance on predefined
rules and static responses. Recent research has explored the use of Generative
Al to enhance adaptive learning by generating personalized feedback
(Grenander et al., 2021; Kulshreshtha et al., 2022; Li et al., 2024; Mejeh
et al., 2024). For example, an automatic feedback system was developed to
analyze learner discourse, detecting correct and incorrect concepts through
relational graphs and neural classifiers (Grenander et al., 2021). Further
studies have demonstrated the role of Generative Al in improving adaptive
learning environments by enhancing feedback mechanisms and refining ITS
capabilities (Kulshreshtha et al., 2022; Li et al., 2024; Mejeh et al., 2024).

IL-PRO PIPELINE AND FRAMEWORK

Our team’s approach to designing learning experiences emphasizes the
integration of movement solutions and conceptual understanding, shaping
key criteria for the IL-PRO platform and learning modules. To be effective,
participant experiences must take place in realistic environments that
promote learning through both physical movement and evolving conceptual
comprehension (see Figure 1). Consequently, feedback and task delivery
within IL-PRO need to be personalized based on both participants’ movement
solutions and their conceptual understanding.

One basis for IL-PRO’s personalization of instruction is the system’s
ability to gather real-time log data. The resulting log files describe key
features of students’ movement and the resulting movement of the IL-PRO
robotic arm. Similarly, IL-PRO is also instrumented to capture, transcribe
and automatically evaluate students’ verbal responses to questions posed
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by the IL-PRO system. These two capacities permit the IL-PRO system to
leverage traditional ML models in addition to existing LLMs to infer and
evaluate students” movement solutions via log-file data, and their conceptual
understanding via transcribed speech data.
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Figure 1: I.-PRO framework architecture.

Telemetry Data

We collect telemetry data, which encompasses both continuous and discrete
data types, and incorporate into analysis within our system to analyze
user behavior, interactions, and performance. Continuous data consists of
real-valued measurements sampled over time, while discrete data represents
distinct events or categorical states. Continuous telemetry in VR captures
real-time movements and spatial relationships. Depending on the task
examples can include: 3D positional data (XYZ coordinates) of objects,
rotation angles around the main coordinate axes for object orientations,
velocity and acceleration of objects. Discrete telemetry events occur at specific
moments, providing context for interactions. Examples include: button
presses (e.g., selecting an object, resetting the task), collision events (e.g.,
hand-object or object-wall interactions), task completion markers, logging
timestamps for specific activities, system state transitions, such as scene
changes or network disconnections.

We collect telemetry data in VR through the Unity’s event-based logging
system, capturing key interactions and system changes in real time. Events
originate from three primary sources: user actions, environmental changes,
and Ul interactions. These events are timestamped, assigned unique
identifiers, and stored for later analysis by statistical and machine learning
methods. The data collection process begins by defining the key variables to
be tracked, such as the position and speed of an object, task success or failure,
or any other measurable entity. Once identified, a script is attached to the
target entity within the VR environment. This script generates a data event
based on a timer or state change, depending on the nature of the data. Each
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data event consists of several parameters: A unique identifier, user ID, session
ID, timestamp, event name, data value. These events are transmitted to a
central Unity component responsible for collecting all events and assembling
a structured file for external processing.

Telemetry data varies widely depending on the task, requiring specialized
processing for each application. Continuous data must be handled as a
sequence, with different cleaning and feature engineering techniques applied
based on the recorded features. For example, when capturing 3D coordinates
of an object, movement and time features can be used to derive higher-
order derivatives, namely velocity and acceleration. Rotation angles can help
calculate deflection angles at each timestamp, while the relative positions
of various objects can serve as additional features. We generate these
features after data collection rather than integrating them into the data
recording process. This approach minimizes computational overhead on the
VR hardware, allowing the game engine to record data at a higher frequency.
Once extracted, these features provide valuable insights into a participant’s
motor skills and task performance. Discrete data also plays a crucial role,
either as standalone indicators of task state or as auxiliary features that
influence how continuous data is processed. Each task requires a custom
data analysis and machine learning framework tailored to its specific goals.
If a task involves finite states at each step and follows a predefined pattern,
a state machine can guide the participant based on their progress. When
assessing motor skill performance, movement patterns must be thoroughly
analyzed and compared against performance benchmarks. Machine learning
techniques, such as skill level classification or expert movement pattern
comparison, can help evaluate a participant’s proficiency.

Speech Data

To assess a participant’s understanding of a given concept, we collect speech
data in the form of a conversation between the student and the instructor.
The instructor, or pedagogical agent, prompts the participant to engage
in dialogue by following a think-aloud protocol, a widely used cognitive
strategy where learners verbalize their thought processes while completing
a task (Nielsen et al., 2002; Eisenberg et al., 2017). Think-aloud methods are
instrumental in educational research, as they provide insights into cognitive
reasoning and conceptual understanding in immersive learning environments
(Blikstein & Worsley, 2016).

We collect each participant’s think-aloud data from recording audio when
they engage in a lesson. At the end of a task, they are prompted to answer
particular questions or explain reasoning behind their actions with the
robotic arm. The questions are set in a way that from the answers, we will
be able to detect at what level the student is in understanding the concept.
For further processing, we convert the audio of the participant (and of the
instructor) to texts using an off-the-shelf automatic speech recognition tool.
We segment the think-aloud data into utterances (or sentences) that can be
further labeled for concept detection.
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We have defined and categorized the participant’s levels of conceptual
understanding that quantify the amount of completeness of understanding
they demonstrate. These levels represent incremental stages in a participant’s
progress from no understanding of concept at all, to a full understanding.
To detect the conceptual level of understanding of the participants from their
speech where they think aloud their reasonings, we are following a generative
approach using LLMs. To establish a baseline model, we use instructional
prompts to categorize the student’s levels of understanding given their speech
as input text. We use labeled data that categorizes each segmented text
according to the participant’s levels of understanding, refining the prompt in
a few-shot manner by providing examples of participant’s utterances along
with the corresponding labels. Each example indicates the presence of a
concept and, if present, one of four defined levels of understanding: NA
(not applicable), L1 (no understanding), L2 (partial understanding), L3 (full
understanding), and L4 (application of the conceptual understanding to a
specific scenario). To provide the LLM examples specific to our use case
for each of the levels of understanding, we have annotated speech of 6
participants for all the tasks and conceptual modules they have participated
in. Prior to performing annotations, we developed a codebook outlining the
tasks of each module in the curriculum. The codebook contains guidelines
that give insights to the annotators about the definitions of each concept and
sub-concept in all the tasks in the curriculum, the definition of the four levels
of understanding, and specific examples with the student’s quoted speech
demonstrating the levels of understanding.

Adaptive Feedback Mechanism

The adaptive feedback system integrates telemetry and speech data
to provide real-time, personalized feedback. Telemetry data provides
quantitative insights into participants’ motor-skill performance, such as
precision, response time, and control accuracy in the ball-balancing task.
Simultaneously, speech data captures qualitative indicators of conceptual
understanding, analyzing verbal responses to detect misconceptions,
knowledge gaps, or confidence levels. Together, these insights inform the
feedback system, allowing it to tailor interventions in real-time.

The feedback framework employs an adaptive decision-making process to
prompt participants with targeted feedback after the completion of a task.
Depending on their performance and conceptual understanding, participants
receive one or more types of feedback: (i) Clarifying Questions, which
encourage learners to reflect on their approach and reasoning; (ii) Conceptual
Definitions, which reinforce fundamental principles of related to the task
where gaps are identified; and (iii) New Challenges or Tasks, which introduce
variations of the original task to deepen comprehension and improve skill
execution. After receiving feedback, participants can choose to engage
with it or skip to the next task, allowing for self-directed learning while
maintaining flexibility in progression. By leveraging telemetry and speech-
based insights, this framework ensures that feedback is timely, relevant, and
reinforcing, optimizing learning outcomes in both motor-skill and conceptual
development (see Figure 2).
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Figure 2: IL-PRO feedback rubric based on student’s performance levels.

USE CASE: BALL BALANCING TASK

In this task, participants control a robotic arm within the VR environment.
The robotic arm holds a paddle with a ball resting on top (see Figure 3). The
objective is to maneuver the robotic arm in such a way that the ball remains
balanced on the paddle and does not fall to the ground. The VR environment
is designed to realistically simulate the physics of the ball, specifically inertia
and gravitational effects. As participants control the robotic arm, they must
carefully adjust their movements to maintain the ball’s stability, taking into
account how gravity along with motion influences its trajectory. The task
is progressively challenging, as participants must complete it using three
different ball sizes and weights. To successfully complete each attempt, they
must guide each ball through a series of predefined waypoints without
dropping it. This exercise is designed to help participants develop a deeper
understanding of inertia and how it affects motion control. By actively
engaging in this task, the expectation is that they can learn the principles
of physics related to inertia and practice their motor control strategies,
improving their ability to anticipate and adjust for the ball’s movement.
Through repeat attempts guiding the various balls, students are able to
investigate a variety of movement solutions. In particular, through their
attempts to complete the task they are able to perceive how the mass of the
different balls impact their movement solutions. Repeating the task helps
participants refine their movement strategies, making them more adaptable
to changes in the ball’s mass. This process also enables them to develop a
practical understanding of inertia, as they recognize the need to adjust their
movements in response to varying mass.
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Figure 3: VR screenshot from IL-PRO’s ball balancing task use case.

For this task the telemetry data is continuous and is timestamped as
recorded. The frequency is 9Hz and the features collected at any instance
are the XYZ positions of the sphere, the XYZ position of the paddle and the
3 rotational dimensions of the paddle. Since the task is to go through four
waypoints in the play space, the data contains markers for each waypoint
reached at any given attempt. whether the attempt fails or succeeds is also
marked at the end of each attempt. The data processing framework for
the telemetry data is designed so it can systematically prepare and analyze
the time-series data derived from VR-based experimental settings involving
dynamic interactions between objects such as spheres and paddles. The
height of the paddle is used as a reference point to keep track of whether
the ball is on the paddle for movement processing and not including the
noise data of when the ball has fallen off. As mentioned in the Telemetry
Data section, these raw features are processed to compute more features
for the proper analysis and modeling. For example, relative spatial metrics
such as the distance between the sphere and the paddle are calculated to
quantify their interactions dynamically. Since one of the main causes of the
sphere movement is the rotations of the paddle along with the movement,
the deflection angles for each of the 3 rotation axes are calculated. The
cumulative deflection and cumulative movement of the paddle are included
to provide a comprehensive view of motion behaviors.

The analytical component of the framework employs Dynamic Time
Warping (DTW) to assess the alignment of time-series sequences (Gold and
Sharir, 2018). DTW is utilized to compute a cost metric representing the
similarity between a participant’s motion patterns and predefined reference
trajectories recorded by an expert performing the same task multiple times.
The more a participant’s movement deviates from the expert patterns, the
higher the calculated DTW score. This score can be used to directly classify
the expertness level of a participant based on statistically derived or heuristic
thresholds. Also, by combining all of the above, the resulting dataset which
comprises raw and derived features alongside DTW alignment metrics, can
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serve as a robust foundation for downstream predictive modelling and
analysis regarding motor skill assessment from continuous telemetry data.
This can be used to train models to perform live motor skill classification for
the feedback to the participants.

Throughout the ball balancing task, we want the students to understand
the concept of inertia. As discussed in the Speech Data section, the data
collection process is the same in this task. Furthermore, we have also
hand labeled 2 participant’s speech in the particular task of ball balancing
where they are taught the concept of inertia with a robotic arm. We collect
each student’s speech when they are prompted to answer specific questions
regarding their experience in completing the task. Based on their answer to
the questions, we detect their levels of understanding in the utterance level
with our LLM and choose the maximum level they reach to decide how well
they understand the concept of inertia.

CLOSING REMARKS

IL-PRO offers a transformative approach to robotics education by integrating
adaptive learning, immersive VR, and Al-driven feedback. By combining
telemetry-based motor skill assessment with NLP-driven conceptual analysis,
the framework is designed to ensure a comprehensive learning experience
that enhances both practical and theoretical understanding. Beyond robotics,
IL-PRO’s principles can be applied to other domains requiring cognitive-
motor integration. Future work will focus on refining Al models for deeper
personalization and expanding VR-based training scenarios. Through these
advancements, IL-PRO aims to improve skill acquisition and better prepare
learners for automation-driven industries.
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