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ABSTRACT

A significant challenge in human-robot collaboration (HRC) is managing the emergent
cognitive workload of the human operator. Current research focuses on understanding
the overall cognitive workload rather than its individual components, which include
intrinsic, extraneous, and germane cognitive loads. Understanding these components
is important for developing HRC tasks that enhance human cognition. In this study,
twelve participants participated in an HRC pick-and-place task under high and low
cognitive workload. Following the task, semi-structured interviews were conducted to
identify the contributors to cognitive workload. The intrinsic workload was primarily
affected by the robot’s speed, the need to multitask, and the learning curve associated
with the robot’s navigation and design. Regarding the extraneous workload, a central
theme was the robot's speed, which triggered distractions for the operator. Finally,
the germane load was characterized by the following themes: acquiring knowledge
for HRC tasks and enhancing multitasking capabilities such as hand-eye coordination.
These results highlight that different aspects of robot design, task design, and
task execution contribute uniquely to the overall cognitive workload. Recognizing
these contributors is important for optimizing human-robot collaboration, improving
efficiency, and reducing the operator’s cognitive burden.
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INTRODUCTION

One of the aims of Industry 5.0 is the enhancement of human capabilities
in manufacturing settings (Xu et al., 2021; Leng et al., 2022). Human-robot
collaboration, where the precision of robots combined with the creativity
of humans, can lead to more efficient and safer manufacturing processes
(Leng et al., 2022). However, successful human-robot collaboration requires
communication between humans and robots, decision-making, planning,
coordination of collaborative tasks, and error handling. These cognitive
processes can complicate the collaborative task and increase the cognitive
workload of the human operator. Previous research has shown that a high
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cognitive workload is linked to decreased performance (Biondi et al., 2021).
Monitoring and understanding the cognitive state of a human is important
for improving human-robot collaboration. The cognitive workload is
characterized by three different types: intrinsic, extraneous, and germane
workload. The task’s difficulty is influenced by the information needed to
be processed and the user’s existing knowledge (Sweller, 1994; Moreno and
Park, 2010). Extraneous workload represents the cognitive effort imposed
by environmental, instructional, and presentation factors. For example,
distractions, irrelevant information, confusing guidance, or information
during the task can lead to an extraneous workload. Germene load refers
to the cognitive effort required to process and integrate new information
into long-term memory (Paas et al., 2003). The cognitive processes
involved include information organization, connecting task demands to prior
knowledge, and constructing mental models to grasp complex concepts.
Current research in HRC focuses on understanding and quantifying the
cognitive workload imposed during the task utilizing objective and subjective
measures. Various studies have demonstrated that physiological measures
can act as a surrogate of cognitive workload (Casali and Wierwille, 1984;
Charles and Nixon, 2019). The physiological measures that capture the
change in cognitive workload can be represented as a function of the
autonomic nervous system. Subjective measurements of mental effort allow
participants to evaluate numerous channels of demand. Self-report surveys,
like the Multiple Resource Questionnaire (Boles et al., 2007) and the
NASA Task Load Index (Hart and Staveland, 1988), are examples of
subjective metrics. Objective and subjective measures can identify cognitive
workload states. However, these measures cannot distinguish the specific
influence of each workload type (intrinsic, extraneous, and germane) on
cognitive workload development. Each cognitive workload type uniquely
contributes to cognitive processing; therefore, assessing them is important
for understanding workload dynamics and optimizing task design in HRC.
For this reason, we conducted a human-subject study where participants
completed a collaborative task with a robot under low and high cognitive
workload states. At the end of the task, participants completed a semi-
structured interview. We conducted a qualitative analysis of participants’
responses and identified key contributors and themes associated with each
type of cognitive load. The findings of this study have the potential to
advance cognitive workload assessment and task execution in human-
robot collaboration by implementing a qualitative interview protocol that
systematically differentiates between intrinsic, extraneous, and germane
cognitive load.

METHODS

Six male and six female college students, with an average age of 27.25 years
and an age range of 6.75 years, participated in the study. All participants
were required to sign a consent form before participating. The university’s
Institutional Review Board approved the study (IRBNO: 2023-593). Each
participant received a $25 Amazon gift card as compensation for their
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participation in the study. The participants in this study used a joystick to
control a UR3e (Universal Robots, DK) collaborative robot to pick up objects
from a surface and place them in a bin. The participants performed the
task under two levels of cognitive workload (low cognitive workload session
and high cognitive workload session), with the order counterbalanced. The
cognitive workload was manipulated by adding a secondary visual task,
which required participants to simultaneously complete the pick-and-place
and the peripheral detection tasks. The pick-and-place task was divided into
picking and placing the object. Participants performed the task at six different
speeds at each division (pick or place), ranging from 0.03 m/s to 0.08 m/s; the
task was performed at all speed combinations for the pick and place states,
resulting in 18 unique speed combinations. Each combination was repeated
four times, resulting in 72 trials, with each trial lasting approximately one
minute. At the end of the session, either low or high, depending on what was
the last session, participants completed a semi-structured interview designed
to understand the different types of cognitive workload involved in the task.

SEMI STRUCTURED INTERVIEWS

We conducted a semi-structured interview to gather insights into the
three cognitive workload types involved in the HRC task. The semi-
structured interview questions were designed by a Professor of Industrial
Organizational Psychology. Intrinsic load questions intended to identify
the cognitive effort required to perform the task and the interactions
involved in the collaborative task. Extraneous workload questions focused
on identifying how environmental factors interfere with the task and impact
the user’s performance. Germane load questions sought to understand how
the knowledge gained from performing the task influences future task
performance. The recorded interview questions for each participant were
transcribed and reviewed for accuracy and readability. The participant’s
data was imported into NVivo. Thematic analysis served as the primary
methodological framework for discovering insights within the text. This
involved a coding process where text segments were tagged with descriptive
labels representing underlying themes, concepts, or ideas. Finally, we
performed a comparative analysis of coded segments across the low and
high-cognitive data. The complete set of interview questions is presented in
Appendix A.

RESULTS

Findings from this study revealed several thematic categories across the
different types of cognitive load, i.e., intrinsic, extraneous, and germane
load. We organize the results by three types of cognitive load, and under
each section, we discuss the observations from the high and low cognitive
workload scenarios.

Intrinsic Load

The study identified three main themes affecting intrinsic workload during
the human-robot collaboration task: robot speed and multitasking, the
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learning curve of the task, and the design challenges. Theme 1: Stopping or
Slowing Down Due to Robot Speed and Multitasking: Across both LCW
and HCW, a primary contributor to intrinsic load was robot speed and
multitasking. Additionally, participants reported slowing down or stopping
because of high robot speed and multiple action items. Specifically, most
participants (>80%) were likely to stop or slow down during HCW. The
participants reported slowing down and stopping when the speed of the
robot increased, and they had to multitask, especially during the initial
stages. Specifically, participants in HCW commented: “I had to stop to adjust
them at the beginning because of the rotation of the arm of the robot.” As
mentioned, sometimes, the participant did not have to stop completely, and
one commented: “I definitely did have to slow down and stop to readjust
when there was a lot going on.” During LCW, 70% of the participants
reported slowing down or stopping during the initial stages of the task and
when the robot was functioning at high speed. However, the participants
were more likely to slow rather than stop, and one participant explicitly
mentioned: “Sometimes, I forgot what I was doing and wanted to know
how far away the robot was from the blocks.” Theme 2: Learning Curve
and Performance: Irrespective of the task load (LCW or HCW), all (100%)
participants reported a learning curve in operating the robotic arm. However,
all participants noted that they could improve their performance, and some
reported that their perceived performance improved towards the end of the
task. Specifically, one participant mentioned: “I started to get pretty good
at it in the end. Like I wasn’t really moving the objects anymore; I was
kind of over them centered. So that was really cool too, like see that 1
was getting better.” Another participant mentioned that: “Omnce it became
an extension of your arm, once you understand the dimensions and the
limitations of the robot arm, I think you could get faster with time.” Overall,
while all participants mentioned the challenges of familiarizing themselves
with the system initially, they all reported an improvement in their perceived
performance and further improvements through training. Theme 3: Robot
Design Challenge: Finally, across both LCW and HCW, another contributor
to intrinsic load was the design of the robot. Specifically, most respondents
during HCW (>80%) and 70% during LCW reported issues with robot
design challenges, such as joystick design, which controls the robotic arm,
and gripper design, which controls the pick and place task. Specifically, one
participant reported: “It might just be a joystick design that the opening and
close buttons I just feel should be close to one another. I don’t know if it’s
possible on a joystick like that.” Another participant mentioned a similar
concern and suggested a redesign idea: “I would actually say moving the
button back to release on the thumb button. Just down the trigger grab, and
the thumb releases it. It would make it a lot more efficient than bringing your
thumb over to the right side.” Another minor design challenge participant
during the HCW and LCW scenarios raised during the HCW scenario was
the gripper design, where the gripper was accurately grabbing the block.
Specifically, one participant commented: “The only thing that gets tricky is
exact positioning. Sometimes, it’s difficult to tell if you’re coming down on
a block, whether you're going to be around it or over it, and you need to
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pull it to adjust it spatially for it. So, the position of the gripper is to pick an
object. I often see the shadows to locate the gripper.” Overall, we observed
that the challenges increasing the intrinsic load across both HCW and LCW's
are similar. However, the intensity and the effect of these contributors were
significantly different across the two workloads (LCW and HCW) scenarios,
where they were more prominent during HCW.

Extraneous Load

The study identified one major theme related to extraneous workload: the
impact of robot speed on operator distraction. Theme: Robot Speed: Across
both LCW and HCW, very few participants reported extraneous distractions
while performing their tasks. However, an interesting observation was that
during both LCW and HCW), participants reported being distracted and
paying attention to the environment when the robot was moving at low
speeds. Overall, participants in the LCW scenario were slightly highly
likely to be influenced by extraneous distractions during their tasks. One
participant commented: “There were definitely times that it was slow enough
I could look at other stuff. I looked at your site and around somewbhere else.”
Overall, very few contributors added extraneous load to this experiment,
which was expected as the study was conducted in a controlled environment.
However, four participants reported that their personal devices, such as
phones and watches, lead to an exraneous load. An interesting observation
here is that participants were more likely to experience an extraneous load
when the task at hand was less challenging.

Germane Load

The study identified three key themes related to germane load during
Human-Robot Collaboration tasks: acquiring HRC knowledge, improving
multitasking skills, and developing hand-eye coordination. Theme 1:
Knowledge of HRC: During both the HCW and LCW scenarios, all
participants (100%) reported gaining Human-Robot Collaboration (HRC)
skills. Since all participants were novice users of robots, this observation
was expected as germane load represents the mental effort dedicated to
assimilating new information to their long-term memory and building mental
models. One participant mentioned: “How to use this joystick, but also
learn to coordinate the robotic arm.” This observation can also be supported
based on the theme noted in Intrinsic Load above (Learning Curve and
Performance), where all participants reported they could improve their
performance, and some reported that their perceived performance improved
towards the end of the task, highlighting the germane load dedicated to
learning HRC skills. Theme 2: Multitasking Skills: Another contributor to
the germane load was the multitasking skills required during the HRC task.
A high majority of participants (>80%) reported gaining multitasking skills
during the HCW scenario, whereas only 50% reported gaining this skill
during LCW. Specifically, respondents during HCW mentioned: “Improved
my multitasking skill where 1 had to use the left and right brain with the left
clicker in my left hand and running the joystick in the right, kind of had to
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use a combination of that.” This observation, where all participants reported
gaining multitasking skills during HCW and very few gaining during LCW, is
expected. As mentioned in the methods section, during the HCW scenario, a
participant has to complete multiple tasks with varying speeds of the robotic
arm. In contrast, during LCW, they have to complete only the pick-and-
place task at varying speeds. Theme 3: Hand-Eye Coordination: Another
primary skill that participants reported gaining during the experiment was
hand-eye coordination skills. Specifically, 25% of the participants reported
gaining hand-eye coordination skills during HCW and LCW. Specifically,
participants reported: “I feel like I gained hand-eye coordination skills by
using this joystick, but also learning to coordinate the robotic arm.” While
hand-eye coordination is one of the primary skills required for multitasking
(theme two above), only a few participants explicitly mentioned this as a
contributor to the germane load.

DISCUSSION

Four key takeaways of this study are: 1. Ergonomics, experience, and
task complexity impact intrinsic load during human-robot collaboration.
2. Training and multitasking affect germane load during human-robot
collaboration. 3. Overlapping nature of factors contributing to germane and
intrinsic load. 4. Challenging tasks exert minimal extraneous load during
human-robot collaboration.

Ergonomics, Experience, and Task Complexity Impact Intrinsic Load
During Human-Robot Collaboration

Ergonomics: Participants in low and high cognitive workload sessions
expressed concerns about the joystick design, more specifically regarding
the position of the buttons for opening and closing the robotic gripper.
The operation of the buttons required hand movements that affected the
task efficiency. Research has investigated the integration of cognitive load
theory in human-computer interaction (Oviatt, 2006; Hollender et al., 2010).
Redesigning the joystick button to a more intuitive design can help the
users learn to operate the robotic arm faster and reduce intrinsic workload.
Another ergonomic issue the participants reported was the robotic gripper’s
position relative to the objects they had to pick up. Participants performed
multiple adjustments to pick up the objects, which led to increased focus
and intrinsic workload. A potential solution to such ergonomic challenges
would be visual feedback through user interfaces accompanied by haptic and
sensory input (Skulmowski et al., 2016). Creating more natural interactions
that do not require cognitive recalibration makes designing robotic systems
that reduce the intrinsic workload needs possible.

Experience: In both sessions, low and high participants experienced a
learning curve to operate the robotic arm to pick and place the objects.
However, time on the task positively affected the learning and participants’
performance. This finding highlights the importance of training new users
in collaborative tasks with robots. The challenge here is knowing what to
train and how to train it. There are many taxonomies of good training
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principles. Still, they generally include some form of needs assessment, some
form of learning context (i.e., attention to good instructional design, the basic
principles of learning, and characteristics of the trainees and trainers), some
evaluation of transfer of training (both positive and negative), and some
form of training evaluation. From a cognitive load perspective, the ideal
training outcome is two-fold: trainees learn all tasks contributing to germane
load and practice skills and abilities that reduce intrinsic load. Usually,
the short time allowed for training is often insufficient for an operator to
develop a large degree of automaticity in critical tasks. Typically, the level
of automaticity seen in experts (versus novices) is acquired not in training
but on the job. Innovative approaches can be implemented to better train
users to gain experience and reduce the cognitive burden of a collaborative
task. One approach would be using augmented or virtual reality to train users
to practice interaction (Kaplan et al., 2021)with reduced time and resources
spent on real-world training.

Task Difficulty: Our research demonstrated that multitasking led to
increased intrinsic workload. Participants in the high cognitive workload
session performed two tasks simultaneously: the primary pick and place
and the secondary peripheral detection task. This dual demand imposed
cognitive challenges on the participants, especially at the beginning of the
session, which led participants to slow or stop performing the task in order
to cope with the cognitive demands. In the low cognitive workload session,
participants did not report stopping, indicating less difficulty compared to
the high cognitive workload. However, sometimes, slowing was necessary to
meet the task needs. Previous research has shown that attentional overload
and cognitively demanding tasks can cause stress, sensory overload, and
errors, whereas attentional underload may result in boredom and reduced
vigilance, and divided attention can lead to cognitive tunneling, narrowing
perception to only the most salient information (Johannsen, 1979; Wickens
and Alexander, 2009). It should also be mentioned that the time on the task
also affected participants’ performance; as participants became more familiar
with the task and its demands, they could handle the intrinsic workload better
and adapt to the task demands, suggesting a reduced workload.

Training and Multitasking Affect Germane Load During Human-Robot
Collaboration

The results of our study showed that participants were able to develop
skills. Participants reported hand-eye movement coordination and enhanced
multitasking abilities, especially during the high cognitive workload. This
finding suggests that the task facilitated learning and implies that experience
is beneficial, as also reported in previous research (Haith and Krakauer,
2018). We should keep in mind that the germane load depends on the
complexity of the task, and it varies based on task design and the human-
robot interface design. Therefore, the task difficulty should be considered
to accommodate different learning stages and maximize skill acquisition.
Furthermore, the cognitive workload varies with the capabilities of humans
(capacity of working memory, the amount and type of spatial ability, and
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other individual differences). Tasks and interfaces that present the human
operator with too much information simultaneously, task designs that require
high amounts of spatial processing, especially spatial transformations, and
task and system designs that require high amounts of numerical or verbal
processing can add to germane load sometimes beyond the capability of a
given human operator.

Overlapping Nature of Factors Contributing to Germane and Intrinsic
Load

In the high cognitive workload, our task required high cognitive demands
(a primary and secondary task), which increased the intrinsic workload and
induced a germane load as participants exerted greater cognitive effort to
manage the complexity of the high cognitive workload state. Intrinsic load
was influenced by the complexity of learning to operate a robotic system,
such as understanding the joystick controls. Germane load was influenced
by the effort required to process and integrate new information and develop
knowledge. These cognitive workload types often overlap. In our study,
the user interface design affected both types of cognitive workload. This
suggests that a nonintuitive user interface can add intrinsic workload and
affect the germane workload as it will require increased cognitive demands.
Therefore, the intersection of task complexity and the controls used in
the user interface design are important to facilitate intrinsic and germane
workload development to achieve effective learning and interaction with
robotic systems.

Challenging Tasks Exert Minimal Extraneous Load During
Human-Robot Collaboration

In our study, the extraneous load was minimal due to the controlled lab
environment. However, our results indicate that the speed of the robotic
arm affected the user’s attention. Participants performing the task at lower
speeds were more prone to distractions and sought additional stimuli
from the surrounding environment, especially in low cognitive workload
sessions. This finding suggests that the low speed of the robotic arm
introduced unintended extraneous load and allowed participants’ attention
to be disrupted. Therefore, it is important to identify robot speeds that align
with the task demands and engage the user with the task to avoid attention
destruction and minimize extraneous workload.

CONCLUSION AND FUTURE WORK

In this study, we focused on identifying and understanding intrinsic,
extraneous, and germane load contributors in a human-robot collaborative
task. Participants performed a collaborative task with a robot at different
levels of cognitive workload and speed. At the end of the task, participants
participated in a semi-structured interview to gather insights about the
development of the three types of workload: intrinsic, extraneous, and
germane. The results of our qualitative analysis demonstrated that intrinsic
workload was affected by the robot’s speed, multitasking demands, and
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learning curve. Furthermore, our results showed that operating the robotic
arm at a low speed created distractions that influenced the extraneous
workload. Finally, the germane load contributed to skill development in
human-robot collaboration, such as hand-eye coordination and multitasking
abilities, particularly during high cognitive workload. Our future efforts
will focus on improving ergonomic design in human-robot collaboration.
Furthermore, we will explore the learning curve of operating a robotic arm
and the skills acquired in human-robot collaboration through longitudinal
studies. Additionally, we will focus on studies that include different user
demographics to identify user needs based on the three different types of
cognitive workload. These efforts will help us understand how to design
robotic systems that enhance human performance while minimizing cognitive
load, ultimately leading to more effective human-robot collaborations.

APPENDIX
A. Intrinsic Workload Questions

1. Do you ever have to stop and think about the units (i.e.,millimeters,
inches) used in the task?

2. Are there parts of your task where you have to stop (or slow down)
to think about it? For example, if you have to think about how the
object being moved is oriented from the robot’s point of view instead
of your own point of view.

3. Are there parts of your task where you will probably get faster at
them (and they’ll become more automatic) as you get more practice
and experience with the task?

4. Areyour controls (including voice commands) easy to understand and
use? Are there aspects of these controls that could be improved to
make the task clearer or easier?

5. Is the information you’re getting from the system easy to understand
and use?

6. Are there things that could be improved to make the task clearer or
easier?

B. Extraneous Workload Questions

1. Was there anything in the immediate work environment that
distracted you from your task?

2. Were parts of the task sufficiently slow that you could look at other
things in the environment (i.e., signs, lighting)?

3. Did you note any unusual noises during the task?

C. Germane Workload Questions

1. What knowledge/skills/abilities did you acquire as you were learning
how to do the job?

2. Were there important tasks that you had to learn while you were

actually doing the job?

Do you feel like you understand the goal of the task?

4. Was there more than one goal (e.g., quantity versus speed)? If so, how
did you prioritize those goals?

(O8]
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