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ABSTRACT

Artificial Intelligence systems often operate as “black boxes”, creating challenges for
trust and collaboration in human-AI teaming environments. Particularly for Unmanned
Aerial Systems swarm operations. This paper proposes an explainable decision
support framework that integrates fuzzy-logic with reinforcement learning to enhance
transparency, while maintaining adaptability. The framework processes uncertain
inputs through linguistic variables and interpretable rules, generating natural
language explanations alongside mission recommendations. Reinforcement learning
optimizes system parameters within constraints, ensuring the decision-making
process remains transparent while performance improves over time. This approach
addresses key challenges in unmanned aircraft systems swarm coordination,
particularly for dynamic task allocation when assets fail or environmental conditions
change. By preserving explainability throughout the optimization process, the system
enables operators to understand not only what decisions are made but why they are
made, which is a crucial factor for establishing trust in human-autonomous teaming.

Keywords: Unmanned aircraft systems, Swarming, Mission management, Fuzzy logic, Artificial
intelligence

INTRODUCTION

The integration of Artificial Intelligence (AI) into decision-making systems
has significantly advanced the capabilities of autonomous systems. However,
the “black-box” nature of many AI models often raises concerns about
transparency, interpretability and trustworthiness. These criteria’s are
especially important in safety-critical domains and the concerns are
particularly pronounced in human-AI teaming, where trust plays a pivotal
role ensuring effective collaboration and adoption of AI technologies.
Human-AI teaming refers to the collaborative work between humans and
AI systems in which both entities contribute complementary capabilities to
achieve a shared goal. In this context humans typically provide contextual
understanding and ethical judgement, while AI systems offer compu-tational
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power and data processing capabilities (Li et al., 2024; Thiebes et al., 2021;
Seeber et al., 2018). Trust in AI systems is influenced by factors such as system
reliability, transparency and the ability to provide meaningful explanations
for decisions (Li et al., 2024; Mehrotra et al., 2023). Addressing these
challenges is crucial to unlock the full potential of AI in the context of
Unmanned Aerial Systems (UAS) swarms.

The simultaneous operation of multiple UAS, either independently or
organized in coordinated swarms have emerged as an important technology
in domains ranging from disaster response to surveillance and defence.
The ResponDrone project demonstrates how drone-swarms can significantly
enhance situational awareness and response capabilities in emergency
scenarios (Polka et al., 2017; Erdelj et al., 2017). Their ability to operate
collaboratively and adaptively offers unparalleled efficiency and scalability
(Tahir et al., 2019). However, coordinating such a swarm involves complex
decision-making under uncertainty. This requires a robust system, that
can dynamically allocate tasks, manage resources and adapt to changing
conditions (Yan et al., 2023; Lamont et al., 2007). It is important
to note that current UAS-swarm technologies predominantly operate
with a Human-In-The-Loop approach, rather than fully autonomy. The
human operator remains essential for high-level decision-making, mission
oversight and intervention in complex situations which automated systems
cannot adequately handle alone. This human-machine interaction ensures
appropriate ethical considerations and accountability while leveraging the
computational advantages of automation (Endsley, 2016). Traditional AI
approaches often struggle with the dual demands of high performance
and explainability in these contexts (Wu and Xu, 2021). This limitation
shows the need for an innovative framework, that balance adaptability with
interpretability.

In this context, Fuzzy-Logic offers a compelling solution to this challenge
by providing an inherently interpretable decision-making framework. Unlike
classical AI methods that rely on non-transparent, statistical models, Fuzzy-
Logic operates through intuitive linguistic rules and degrees of truth.
Which makes it well-suited for modelling human-like reasoning in uncertain
environments (Wu and Xu, 2021; Improta et al., 2019). For example,
instead of rigid thresholds like “flight speed > 25 m/s”, Fuzzy-Logic employs
terms such as “pretty fast” or “very fast”, which align more closely with
human perception (Improta et al., 2019). This characteristic makes fuzzy
logic particularly valuable in Human-Machine Interface (HMI) design, where
promoting trust and collaboration is essential (Crandall and Cummings,
2007). Especially for mission management of multiple UAS or a UAS-
swarm, studies have shown that trust is one of the most crucial human
factors that need to be considered in the design of the HMIs (Friedrich,
2021). Current research in mission planning systems for UAVs confirm that
establishing trust between operators and autonomous systems remains a
significant challenge, that must be addressed through transparent interfaces
and explainable decision processes (Huttner and Friedrich, 2023).

Building on these principles, this paper proposes a framework for an
explainable decision support system for mission planning of UAS swarms.
The approach proposes to integrate Fuzzy-Logic with Reinforcement
Learning (RL) to optimize performance, while maintaining transparency.
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Fuzzy-Logic serves as the foundation for modelling uncertainty and
generating interpretable outputs, while RL enhances adaptability by fine-
tuning the system parameters based on feedback from simulations (Melin and
Castillo, 2013; Berenji and Khedkar, 1992; Kober et al., 2013). This hybrid
approach ensures that the systems remains explainable even as it learns and
evolves over time (Zander et al., 2023).

BACKGROUND AND RELATED WORK

Fuzzy-Logic in Decision Support Systems

Fuzzy-Logic has emerged as a powerful tool for decision-making in uncertain
and complex environments. Unlike classical, binary logic, which operates in
discrete true or false values, Fuzzy-Logic allows for reasoning with degrees
of truth. This enables more of a human-like decision-making process. This
flexibility makes it particularly well-suited for applications where data is
incomplete, imprecise or ambiguous (Wu and Xu, 2021).

Fuzzy Decision Support Systems (FDSS) leverage linguistic variables, e.g.
“high risk” or “moderate priority”, and an intuitive rule-based framework
to model human reasoning. These systems are inherently interpretable due to
their reliance on transparent “if-then” rules, that align closely with human
cognitive processes (Wu and Xu, 2021; Zander et al., 2023). For example,
a Fuzzy-Rule might state: “If resource availability is low and task priority is
high, then allocate additional resources”.

However, challenges remain in subjective definition of membership
functions and rules, as well as in integrating Fuzzy-Logic with data-driven
approaches, like machine learning. Recent advancements have explored
hybrid models combining Fuzzy-Logic with RL to address these limitations
while maintaining system inter-pretability (Zander et al., 2023).

UAS-Swarms and Mission Planning

UAS swarms represent a significant advancement in autonomous
systems, offering scalability, redundancy and adaptability in dynamic
environments (Tahir et al., 2019). These swarms are increasingly deployed
in applications such as disaster response, surveillance and precision
agriculture (Karampelia et al., 2023). However, coordinating multiple UAS
introduces new challenges related to task allocation, resource management
and real-time decision-making under uncertainty.

Dynamic task allocation is a critical component of swarm mission
planning. Algorithms such as Ant Colony Optimization (ACO), Genetic
Algorithms (GA) and Binary Wolf Pack Algorithms (BWPA) have been
employed to optimize task distribution among UAVs. These strategies are
based on factors like task priority, resource constraints and environmental
conditions (Peng et al., 2021; 2022).

In addition to task allocation, UAS swarm coordination relies on robust
communication protocols and formation control strategies to ensure efficient
operation. Distributed control methods have proven superior to centralized
approaches in enhancing swarm scalability and resilience to communication
failures (Karampelia et al., 2023). Despite these advancements, the
integration of explainable decision-making frame-works for UAS swarm
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coordination remains an underexplored topic. To assess the research
landscape in this area, a literature review using the following terms:
“explainable AI” and “UAS swarm” and “coordination” in the Scopus
database has been done. The search was limited to publications from
2018 to 2025. From initial 127 results, only 14 paper addresses both
UAS-swarm coordination and explainability aspects. Furthermore only 8
publications specifically examined explainable decision-making frameworks
in the context of UAS-swarm operations. This confirms the significant
research gap in integrating explainability into UAS-swarm coordination
systems. Particularly those designed to support human operators.

Explainable AI

XAI aims to bridge the gap between AI’s computational power and human
trust by making AI systems more transparent and interpretable. The National
Institute of Standards and Technology (NIST) identifies four core principles
for XAI, which are listed below and are essential for fostering trust in AI
systems deployed in safety-critical environments (Phillips et al., 2021).

• Transparency
• Interpretability
• Accuracy of explanations
• Knowledge limits

Human-centred XAI approaches emphasize tailoring explanations to the
needs of specific user groups. For example, declarative explanations may
suffice for engineers seeking technical details about system operations, while
interactive or visual explanations may be more effective for non-technical
users (Liao and Varshney, 2022). Studies have demonstrated that well-
designed explanations can enhance user trust by providing clear justifications
for AI decisions while reducing the need for constant monitoring (Ferrario
and Loi, 2022; Friedrich et al., 2023).

In robotics and autonomous systems, XAI methods, such as decision trees
have been employed to make AI-driven decisions more understandable to
operators. These methods are particularly relevant for UAS swarms operating
in dynamic environments, where real-time interpretability is crucial for
effective human-machine collaboration (Ferrario and Loi, 2022).

Integration of Reinforcement Learning With Fuzzy-Logic

RL has shown promise in optimizing decision-making systems by enabling
adaptive learning from interactions with the environment (Kober et al.,
2013; Sutton and Barto, 2018). However, traditional RL methods often lack
transparency due to their reliance on complex neural network architectures.
Integrating RL with Fuzzy-Logic offers a solution by combining the
adaptability of RL with the interpretability of Fuzzy inference systems.

Takagi-Sugeno-Kang (TSK) Fuzzy-Systems optimized via RL have
demonstrated success in various domains by fine-tuning membership
functions and rule parameters without compromising system
transparency (Zander et al., 2023; Berenji and Khedkar, 1998). For instance,
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RL can adjust Fuzzy-Rules dynamically based on feedback from simulation
environments or real-world operations while ensuring that the underlying
rule structure remains interpretable (Zander et al., 2023).

This hybrid approach has been applied to problems, such as mobile
robot navigation and safety-critical decision-making in autonomous driving
(Zander et al., 2023). By containing RL optimization within the bounds
defined by the Fuzzy-Rules, it is possible to achieve a balance between
performance improvement and explainability, which is a key requirement for
trustworthy AI systems deployed in high-stakes environments.

PROPOSED FRAMEWORK

System Architecture

The in this paper proposed framework integrates the Fuzzy-Logic, RL and
AI principles to create a decision support system for mission planning of
UAS swarms. The architecture is designed to address two primary objectives.
Firstly, the systems needs to ensure the interpretability and transparency
through the use of Fuzzy-Logic and secondly it needs to be able to enhance
the adaptability and performance via RL while maintaining explainability.

The system consists of three core components, which can be seen in
Figure 1 and are described in the following section. The Fuzzy-Logic
module defines linguistic variables, membership functions and rule-based
inference systems to model human-like reasoning. It processes uncertain
inputs and generates interpretable outputs in natural language. The RL
module optimizes the parameters of the Fuzzy-Logic system, such as
membership functions thresholds and rule weights. The optimization process
is constrained to preserve the structure and interpretability of the fuzzy
rules. The mission planning engine is the last core component, which
integrates the outputs from the Fuzzy-Logic module with real-time data
from UAS swarm operations to dynamically allocate tasks, manage resources
and adapt to changes. The overall architecture ensures that decision-
making remains transparent while leveraging adaptive learning capabilities
to improve performance over time.

Figure 1: Three component architecture for explainable decision support UAS-swarm
operations.

Fuzzy-Logic Framework

In this framework, the linguistic variables are defined to represent key aspects
of mission planning, such as risk level or resource availability. Each variable
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is associated with membership functions that map quantitative inputs, for
example numerical sensor data, to qualitative terms, that are understandable
by humans. These membership functions determine the degree to which an
input value belongs to a specific linguistic category. For example, the extent
to which a 70% battery level represents “sufficient” or “limited” resource
availability.

A set of “if-then” rules forms the knowledge base for the decision-making
process. For example, one of the Fuzzy-Rules could be defined as “If the risk
level is high and the task priority is low, then postpone the current task”.
Using these rules, which are designed in collaboration with domain experts,
ensures the alignment with operational requirements and human reasoning
patterns.

The Fuzzy-Logic framework employs amulti-step process. First is the input
fuzzification, which converts precise numerical values into fuzzy-values.
Then a rule evaluation in which each relevant rule is applied, is performed.
After that an aggregation combines the output of all rules. And finally,
defuzzification converts the aggregated fuzzy output into a clear, actionable
decision or recommendation. This comprehensive process allows the system
to handle uncertainties, while maintaining explainability throughout the
decision process.

This approach differs from traditional AI systems as it preserves the
reasoning process in a human-readable format, enabling operators to
understand not only what decision was made, but also why it was made.

Reinforcement Learning Integration

The RL component of the framework plays a crucial role in optimizing the
fuzzy-logic system, while preserving the explainable nature. RL enhances
the adaptability of the fuzzy-logic system by optimizing parameters based
on feedback from simulations or real-world operations. It is then used to
adjust the membership function boundaries to better reflect observed data
distributions or it fine tunes the rule weights to prioritize certain actions
under specific conditions.

To support transparency, the RL optimization is constrained with
predefined boundaries. Therefore, RL cannot modify the structure or logic
of the fuzzy-rules, but can adjust numerical parameters. This constraint-
based approach implements a so called “cooperative neuro-fuzzy system”,
where learning algorithms improve performance without sacrificing the
interpretability advantages of the original fuzzy-system (Berenji and Khedkar,
1992). This hybrid approach ensures that the system remains interpretable
while benefiting from adaptive learning capabilities.

The reward function needs to be carefully designed to balance performance
metrics, such as mission completion time and resource efficiency, with
explainable metrics, such as rule consistency and linguistic coherency. During
the learning process, parameter changes are gradually introduced to allow for
both system stability and human oversight of the adaptation process.
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Discussion: Human-Interpretable Re-Planning in Dynamic
Environments

To evaluate the effectiveness of the proposed framework, simulation studies
will be conducted using realistic mission scenarios, such as search and rescue
operations in disaster areas involving UAS-swarms. The primary focus will
be on examining how the system handles dynamic environmental changes,
sensor failures and unexpected obstacles, which would typically require
mission re-planning.

A critical aspect of the evaluation will focus on human interpretability.
It will be evaluated, whether the operator better understands decision
rationales from the fuzzy-logic enhanced system compared to traditional
RL approaches. This comparative assessment builds on the fundaments of
explainable AI, which includes interpretability metrics for AI system used in
critical decision-making context (Arrieta et al., 2019).

The system’s ability to re-plan missions when faced with environmental
changes or asset failures represents a key evaluation topic, i.e. whether
human operators can readily understand why re-planning occurred through
the natural language explanations generated by the fuzzy-logic system.
This human-centred evaluation approach aligns with current research
on XAI, which emphasizes that the explanations must be adapted to
human cognitive pat-terns rather than merely exposing technical processes
(Miller, 2017).

By combining fuzzy-logic’s inherent interpretability with RLs adaptability,
it is expected to achieve a balance that maintains system transparency,
while enabling performance optimization. Allowing operators to develop
appropriate trust in the system’s decision-making capabilities even as
conditions change during mission execution.

Discussion: A promising Approach and Way Forward

The integration of fuzzy-logic with RL for mission planning of UAS-swarms
present a promising approach to address the critical challenges of maintaining
human trust in increasingly autonomous systems. The following section
discusses the anticipated benefits, evaluation approaches, challenges and
broader implications of the proposed framework.

The primary advantage of the hybrid approach lies in its ability to balance
adaptability with explainability, which is a crucial aspect in safety-critical
environments. By preserving the interpretable structure of fuzzy-logic, while
leveraging the optimization capabilities of RL, the system can evolve and
improve without becoming opaque to human operators. This transparency
is expected to foster appropriate trust from the operator.

Furthermore, the natural language explanations generated by the fuzzy-
logic system offers justifications for decision that align with human cognitive
patterns. Unlike black-box approaches that may provide no reasonable
explanations, which do not accurately reflect the actual decision process,
the proposed framework works with explanations which are directly
emerged from the same rules to make decisions. This congruence between
explanation and decision mechanism addresses a significant limitation in
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current explainable AI implementation for autonomous systems (Liao and
Varshney, 2022; Arrieta et al., 2019).

The validation of the framework will follow a multi-phase approach
focusing on both, system performance and human factors. Initial evaluation
will occur though a simulation environment, which replicates challenging
mission scenarios involving environmental changes, resource limitations and
asset failures. These simulations will assess the system’s ability to re-plan
missions effectively while maintaining explainability. The evaluation will
involve UAS operators with varying levels of experience to ensure the system’s
explanations are accessible across different expertise levels.

We hypothesize, that operators will demonstrate improved situation
awareness, increased trust and more effective decision making when working
with the explainable system compared to non-explainable alternatives. This
human-centred evaluation approach acknowledges that the measurement of
success for decision support systems is their ability to enhance human-AI
collaboration rather than merely autonomous performance.

Furthermore, several challenges must be addressed during the
implementation and evaluation of the proposed framework. First, the
subjective nature of fuzzy-rule definition introduces potential inconsistencies
or biases from domain experts. To mitigate this, it is planned to incorporate
knowledge from multiple experts and refine rules though iterative validation.

Second, balancing the preservation of explainability with optimization
through RL significantly presents a fundamental tension. If RL alters
membership functions or rule weights, the resulting system may become less
intuitive despite formal preservation of the rule structure. This needs to be
addresses, to carefully constrain optimization spaces and ongoing evaluation
of explanation quality throughout the learning process.

Lastly, the dynamic environments of disaster response scenarios present
unpredictable challenges that may fall outside the anticipated parameters of
the system. To address this limitation, the framework includes mechanisms
for identifying situations, where confidence in recommendations should be
reduced, explicitly communicating uncertainty to operators in these cases.

Beyond UAS-swarm operations, this research contributes to the growing
field of human-AI teaming in complex environments. The principles
and methodologies developed here may extend to other domains where
explainable decision-making is critical, such as autonomous vehicles.

The approach represents a shift from viewing AI systems as either fully
autonomous or merely tools, towards conceptualizing them as teammates
with complementary capability to human operators. This perspective
emphasizes the importance of mutual predictability, shared understanding
and appropriate trust. This all is facilitated by the explainable AI framework.

As autonomous systems become increasingly prevalent in safety-critical
domains, the ability to provide transparent justifications for decisions
will likely become a regulatory requirement rather than merely a design
preference. This framework anticipates such a development by demonstrating
how explainability can be preserved even as systems learn and adapt over
time.
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