
Human Factors and Simulation, Vol. 180, 2025, 23–31

https://doi.org/10.54941/ahfe1006385

Simulation for Artificial Intelligence
Modeling and Assessment
Daniel Barber and Lauren Reinerman-Jones

Southwest Research Institute, San Antonio, TX 78238, USA

ABSTRACT

Recent developments in autonomous fighter jets and concepts such as an autonomous
wingman are pushing the boundaries for human-autonomy teaming in high-risk
military flight operations. Many of these concepts explore the use of aides to accelerate
pilot decision-making and reduce cognitive demands. Artificial Intelligence (AI) is a
key enabling technology for decision support and automation of flight processes.
Machine learning (ML) techniques are the primary method of training and validating
modern AI models which requires representative data of increasing size. Acquiring
this data is often a major blocker to the development of AI models. This becomes
even more challenging when the target domain is aircraft for the U.S. Department
of Defense (DoD) where existing datasets may be classified and/or inaccessible. A
second requirement in the development of an AI model is an operational environment
to integrate, execute, and assess performance in a closed-loop system. The ability to
assess the AI safely in a live environment can also be difficult as when technology
hasn’t yet fully matured. To address these challenges in the development of AI models
for a decision support system, Southwest Research Institute (SwRI) leveraged the
U.S. Air Force Research Laboratory’s (AFRL) Advanced Framework for Simulation,
Integration, and Modeling (AFSIM) as a solution. This paper explores lessons learned
in using AFSIM and its recently added support for the Python programming language
to create a testbed for generating data of sufficient size to train Artificial Neural
Networks (ANNs) to perform decision support and demonstrated in a closed-loop
manner with new/live data.

Keywords: Modeling & simulation, Artificial intelligence, AFSIM, Spiking neural network,
Neuromorphics, Human system teaming, Decision support, Human autonomy interaction

INTRODUCTION

The DARPA Alpha Dogfight Trials were broadcast live on YouTube in
the middle of the pandemic, whereby Artificial Intelligence (AI) controlled
aircraft faced-off against pilot-controlled aircraft in a virtual environment
and the AI won. The eight teams of AI developers each took different
approaches in algorithm generation and data training. The team that
outperformed the others used deep reinforcement learning and ignored
dogfighting doctrine. Although this algorithm won the fight, pilots voted
a different model that included doctrine and matched their own training as
most reliable and trustworthy. The Alpha Dogfight Trials fed the DARPA Air
Combat Evolution (ACE) program, moving the algorithms from simulation

© 2025. Published by AHFE Open Access. All rights reserved. 23

https://doi.org/10.54941/ahfe1006385

24 Barber and Reinerman-Jones

to real aircraft and focusing on the importance of objective operator trust
calibrated with the dogfighting agents with the agents’ intent. In 2022, AI
flew a live F-16 in a simulated dogfight, ushering in the future of autonomy
in tactical aerospace and paving the way for the next generation of AI, which
are cognitive and neuromorphic AI.

Cognitive AI aims to replicate human thought processes and strives
to emulate the way humans learn, think, and make decisions going
beyond basic data processing and pattern recognition. Neuromorphic AI
seeks to build computational systems consisting of a biologically inspired
architecture, which involves creating Artificial Neural Networks (ANNs)
with specialized hardware and software that emulate the behavior of
biological neurons. Neuromorphics enables real-time, parallel processing and
low power consumption with all the learning power of other cognitive AI.

Techniques in Neuromorphics include spiking neurons rather than
traditional artificial neurons that process continuous-valued inputs within
what are called Spiking Neural Networks (SNNs). SNN neurons
communicate using discrete spikes or pulses of activity, similar to the way
neurons in the brain communicate through action potentials (Indiveri et al.,
2011). Neuromorphics enables real-time, parallel processing. Algorithms
can be implemented using software simulations that run on conventional
hardware; however, they are optimal when using specialized hardware (chips)
that do not require Graphics Processing Units (GPUs). Neuromorphics can
be implemented alone or complementary to traditional AI. Neuromorphics
are beneficial to Size, Weight, and Power (SWaP) constrained environments
andwhen optimization of processing latency is critical (Schuman et al., 2017).
Neuromorphics is still a nascent technology, requiring research to understand
its’ capabilities and potential. The Southwest Research Institute is exploring
the potential of Neuromorphics to bring enhanced capabilities such as 3D
correlation and tracking, signal classification in electronic warfare, visual
perception, and tactical decision making/support to constrained hardware
environments (e.g., military aircraft, small drones). The current case study
seeks to explore the use of Neuromorphics to create a tactical decision
support system for military pilots. Developing an SNN to achieve this
objective requires two things: data sets large enough to build and evaluate
models and an operational environment to integrate, execute, and assess
performance of models in a closed-loop environment.

AIRCRAFT MODELING & SIMULATION FOR AUTONOMY

The state-of-the-art in AI applications apply Machine Learning (ML)
techniques with massive data sets to train and validate models. One of
the most popular Large Language Models today, ChatGPT, leverages data
from publicly available sources, academic research, user-generated content,
third-party partnerships, and human trainers, (OpenAI, 2024). Gathering
the necessary data for model development using ML becomes increasingly
difficult within military domains such as aircraft for the U.S. Department of
Defense (DoD) where existing data sets are classified or simply unavailable.
Moreover, even if existing data sets were made available, they would

Simulation for Artificial Intelligence Modeling and Assessment 25

not cover the full spectrum of situations and edge-cases aircraft may
encounter. For example, encounters with different aircraft or tactics yet to
be employed in real environments. This limitation is further exacerbated
when exploring concepts where some technologies have yet to be fully
developed or deployed (e.g., autonomous swarms, combat wingman). To
develop an SNN for a decision support system, there exists a need for
simulations capable of delivering the appropriate level of fidelity for sensors
and the environment matched to real-world systems while also able to cover
the necessary spectrum of scenarios for data set generation. In addition
to data set generation, there must be methods to integrate, exercise, and
assess the SNN (or any other AI approach) built from this data within the
simulation environment with new data generated in real-time. To address
these two challenges for AI modeling, the team leveraged the U.S. Air Force
Research Labs (AFRL) Advanced Framework for Simulation, Integration,
and Modeling (AFSIM).

Supporting Decision Making Autonomy

AFSIM is an object-oriented C++ library used to create simulation modeling
platform interactions in a geographic context. AFSIM incorporates top-level
objects within the framework, called platforms, representing systems and
their attached attributes (e.g., sensors) supporting advanced modeling of
ground, air, space, surface, subsurface vehicles in addition to buildings or
living things, and interactions among platforms including sensor detections,
collisions, and communications to name a few. AFSIM’s core applications
deliver weapon engagement analysis support, mission analysis/baseline
simulation application, sensor coverage and antenna gain plot creation,
weapon model development support, and post processing and report
generation, (Defense Systems Information Analysis Center, 2023). Moreover,
AFSIM provides advanced scripting capabilities for generation of scenarios
modeling aircraft, such as a generic fighter or unmanned air system (UAS), for
generation and capture of sensor inputs used in the decision-making processes
of a pilot, operator, or in this instance a decision support system.

A key benefit for use of AFSIM for creation of a decision support
system is the incorporation of Endsley’s model of situation awareness (SA),
which facilitates use of an Boyd’s observe, orient, decide, and act (OODA)
loop, (Endsley, 1995; McIntosh, 2011). This enables simulated aircraft
information processors to consume data in ways analogous to how human’s
make decisions. As a result, AFSIM delivers a framework for capture of
data, reasoning on it, and implementing actions which directly supporting
development of decision support aides for a pilot in addition to creating
models for processing sensor data for sensemaking, classification, signal
matching, and more. AFSIM supports a “closed-loop” decision making cycle
following components of an OODA loop, see Figure 1.

These components include situation awareness processing and rule-based
AI techniques (e.g., behavior trees, finite state machines) that can be
substituted or paired with other approaches. For example, a decision support
SNN running on Neuromorphic hardware consuming the same inputs as the

26 Barber and Reinerman-Jones

SA processor (Observe) and learns relationships between those inputs and
possible actions (Orient) to then map the state of the environment to actions
(Decide) for implementation (Act).

Figure 1: Information processing approach using AFSIM.

Integrating Data Capture Tools and AI Applications

A recent development in feature releases of AFSIM facilitates rapid data
capture and integration of AI through the addition of support for the
Python programming language. Although AFSIM’s native scripting language
provide means of data logging and data links to external software, there
are limitations and constraints for developers. For example, using AFSIM
native scripts, one can write raw data in binary formats to files on disk,
but this requires creating a duplicate implementation of a reader in different
programming languages used in third-party software. Any changes in data
requirements or format would also require updates to both the AFSIM
script and third-party applications as well, limiting re-use of code. Second,
data links into AFSIM are primarily geared toward sensor or control
inputs, existing messages, and not custom commands (i.e., decision support
recommendation) without building new C++ plugins. Although functional,
this approach has limited flexibility for changing what kind of data needs
to be collected, when it can be shared, injecting new data into AFSIM,
and doing so in a way compatible with best-in-class AI programming
tools and techniques written in Python. Therefore, leveraging the power of
Python support enables reuse of code between third-party AI applications
and AFSIM simulations. AFSIM includes two methods for using Python:
1) AFSIM in Python and 2) Python in AFSIM. The first approach, AFSIM
in Python, supports running AFSIM simulations directly from Python, while
the second method, Python in AFSIM, enables execution of Python modules
from within AFSIM applications. For this effort, the team selected the second
approach as it had more flexibility, better re-use of Python code, and direct
use of AFSIM tools and visuals to demonstrate capabilities.

Using the aforementioned “Python in AFSIM” approach, several Python
modules and tools were created to 1) enable capture of aircraft perception

Simulation for Artificial Intelligence Modeling and Assessment 27

data for AI development and 2) sending decision support information
for use within the simulation. The industry standard and open-source
universal messaging library ZeroMQ (ØMQ) was selected for inter-process
communication between standalone applications and AFSIM due to low
latency and asynchronous capabilities, (ZeroMQ,2024). An AFSIM scripting
module was created for re-use across AFSIM scenarios that loads Python
modules dynamically, injecting simulation state and events into them for
sending data to AI programs or applications recording data in bulk for use in
training SNN models. This AFSIM script also checks for incoming messages
from external programs (i.e., neuromorphic decision aide) and passes them
to simulated entities. This approach resulted in minimal programming within
AFSIM outside of scenario creation as all code driving interactions occurred
withing re-usable Python modules, Figure 2.

Figure 2: Integration of AFSIM, AI, and Python software.

Simulating Aircraft Scenarios for Model Development

Building upon the infrastructure previously described, the team constructed
a simulation of a pilot flying a generic fixed-wing aircraft to generate data
and provide a closed-loop testbed for creation of tactical decision support AI
with AFSIM. The simulated pilot/aircraft supported three decisions: ROUTE,
FIGHT, and EGRESS. The ROUTE task instructs the pilot to follow a pre-
defined mission route towards a target. The FIGHT task suggests the need
to engage enemy aircraft. Finally, the EGRESS task informs the pilot that
it should return to their home location as quickly as possible. For all tasks,
if within range of a target, the pilot can be notified of ability to launch a
GPS navigated bomb to destroy it. For all scenarios, the primary mission
goal was to destroy a ground target and survive any engagements with

28 Barber and Reinerman-Jones

enemy aircraft. Several unique scenarios were created to capture an equal
number of data samples for each command under a variety of different
conditions. To best support ML using supervised learning for an AI model
(i.e., SNN), it is important that the number of each decision type were equated
in generated data sets to avoid biasing the model toward one decision or
another while supporting generalizability. Data set ground truth labels, what
the correct decision should be at a given time, was determined using pre-
defined heuristics within AFSIM scripts that controlled aircraft behavior. The
heuristics acted as “Subject Matter Expertise” as to what the right decision
should be at each time step. Therefore, in the absence of AI control, AFSIM
scripted logic controls aircraft behavior and defines “ground truth.” Ground
truth data is necessary so that AI can “learn” what the output should be for
a given input. The final simulation implemented behaviors using the scripted
“ground truth” logic or decisions resulting from a trained SNN running on
Neuromorphic hardware during runtime.

To deliver variation and required data distribution, combinations of
scenarios including either one versus zero (1v0), one versus one (1v1), or
one versus two (1v2) enemy aircraft were created. These combinations
were selected to support capture of unique inputs and transitions capable
of triggering a change in decision recommendation while also achieve an
appropriate distribution of each decision state. For example, in 1v0 scenario,
with no enemy aircraft, the FIGHT task would never occur resulting in only
the ROUTE and EGRESS recommendations occurring. However, in a 1v1
situation where the aircraft believed it could successfully engage and still
bomb the ground target you would capture all three categories (ROUTE-
>FIGHT->EGRESS). In 1v2 scenario the AI decision aide (or script) may
decide it is outmatched and recommend EGRESS or try sneak in and bomb
the target before flying home, each of which results in a different duration of
ROUTE and EGRESS decision states.

Table 1: Sample scenarios with amount of time within a scenario each decision is
recommended.

Friendly
vs #
Enemy

Scenario Description ROUTE FIGHT EGRESS

1v0 ROUTE to target, drop
bomb, then EGRESS
home.

50% 0% 50%

1v1 ROUTE to target. Switch
to FIGHT defeat enemy
aircraft, resume ROUTE,
then EGRESS home after
bombing target.

33% 34% 33%

1v1 ROUTE to target. Switch
to FIGHT defeat enemy
aircraft, EGRESS when/if
bingo fuel/weapons.

32% 50% 18%

Continued

Simulation for Artificial Intelligence Modeling and Assessment 29

Table 1: Continued

Friendly
vs #
Enemy

Scenario Description ROUTE FIGHT EGRESS

1v2 ROUTE to target. EGRESS
if unable to bomb
without engagement of
two (2) enemy aircraft.

25% 0% 75%

Totals 32% 36% 32%

LESSONS LEARNED

There were several challenges encountered during the implementation of the
simulation approach presented using AFSIM. The first challenge was related
to stability and early stage of documentation surrounding Python support
in the current feature releases of AFSIM. As previously described, AFSIM
supports either “Python in AFSIM” or “AFSIM in Python.” Initially, the
latter method was explored as a means to directly interact with AFSIM
libraries, automate simulation execution, and capture data from within a
Python environment, but this approach did not support access to all data due
to howC++ interface bindings are exposed to Python. This challenge became
more pronounced as development proceeded and the need for additional data
was identified to support training an SNN.Therefore, the “Python in AFSIM”
approach was selected as any data exposed within an AFSIM script can be
explicitly delivered to a Python module. An additional result of using this
approach was the need to convert AFSIM data into re-usable Python data
structures that could be shared using inter-process communication techniques
(i.e., ZeroMQ). To support both data set logging and serialization/deseri-
alization steps needed for data interchange, Google Protocol Buffers were
leveraged, (Google, LLC., 2024). Protocol Buffers allow developers to define
data types as “messages” independent of a specific programming language.
A Protocol Compiler application called “protoc” reads these definitions to
generate versions of the data types in multiple programming languages (e.g.,
C++, Python, Java). This approach supported generation of data types for
use in AFSIM, Python, and future applications written in other programming
languages while including built-in capabilities for data interchange with
ZeroMQ and data set logging. Although more challenging to use due to the
need for inter-process communication in this application, there was an added
benefit in that AFSIM’s tools were leveraged to demonstrate AI with real-time
3D visualizations. Without this capability, an additional visualization would
be needed to showcase the resulting integrated solution.

Other issues to overcome using Python in AFSIM were early stages of
documentation and software issues. As a preface, the authors do not want
to overstate the significance of these issues. A feature release of AFSIM
was used for the current effort (version 2.2408.0) and documentation and
software bugs are very likely to be resolved in future stable releases. As a
newly developing feature within AFSIM, the documentation on how to enable
Python functionality is distributed across different sets of documentation and

30 Barber and Reinerman-Jones

examples and not in a single location. Second, two methods of executing
Python code in AFSIM scripts are documented, but one of the two methods
does not currently work in all AFSIM applications. For example, AFSIM
includes two main programs for simulation execution: Mission andWarlock.
Mission is a command line tool that runs scenarios in hyper time or wall-clock
time.Warlock has a graphical user interface (GUI) and visualizes the scenario
as it runs using wall-clock time. The authors were only able to get theMission
application to fully supported both Python approaches, whileWarlock would
“crash”when using amethodwhere Python code is written directly within the
scripts. Once discovered, this challenge was overcome using the alternative
Python integration method using native script objects.

CONCLUSION

In summary, several lessons were learned related to how AFSIM can support
AI development and integration with third party software applications like
those in this project. Although new and not free of errors, the recent
inclusion of Python into the AFSIM ecosystem delivers previously unseen
simulation flexibility and extensibility. Previous approaches to extending
AFSIM required development of C++ plugins which bring their own
challenges with respect to debugging and cross-platform support (i.e.,
Windows vs Linux OS). Python is much more platform agnostic and is
the state-of-the-art/best practice programming language for AI research and
development. The present effort greatly benefited from the ability to rapidly
add new functionality, change data capture needs, and integrate different
AI techniques for creation of a tactical decision support system. Moreover,
these capabilities can be quickly adapted to different AI applications in
other domains AFSIM supports: (e.g., ground, sea, space, track correlation,
sensing). Finally, AFSIM supports both UNCLASSIFIED and CLASSIFIED
efforts, making it an ideal starting point for transitioning products to
existing and future Department of Defense (DoD) customers. A specific
recommendation for future work is the development of tools to support
more automated scenario generation for creating data sets. For example, as a
proof of concept and approach for model development, many of the scenarios
were very similar with primary changes being to starting locations of aircraft,
target, and route. It’s possible a “template”scenario could be created and then
used to produce multiple unique situations through a “random”modification
of a core set of parameters (e.g., initial location and speed, number of
weapons). This type of tool, integrated with AFSIM through Python modules
developed under this effort, paired with Monte Carlo simulation capabilities
of AFSIM, could then generate, run, and modify the template to produce a
significantly larger number of behaviors and events for machine learning data
sets.

ACKNOWLEDGMENT

The authors would like to acknowledge the contributions of Brian Millikan
and Howard Yanxon in the advancement of this effort.

Simulation for Artificial Intelligence Modeling and Assessment 31

REFERENCES
Defense Systems Information Analysis Center. (2023, 10 4). AFSIM. Retrieved from

DSIAC: https://dsiac.dtic.mil/models/afsim/.
Endsley, M. R. (1995, March). Toward a Theory of Situation Awareness in Dynamic

Systems. The Journal of Human Factors and Ergonomics Society, 37(1), 32–64.
doi: 10.1518/001872095779049543.

Google, LLC. (2024). Protocol Buffers - Google’s data interchange format.Retrieved
01 03, 2025, from https://github.com/protocolbuffers/protobuf.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruk, T.,... Boahen, K. (2011). Neuromorphic silicon neuron
circuits. Frontiers in Neuroscience, 5. doi: 10.3389/fnins.2011.00073.

OpenAI. (2024, 11 1). How ChatGPT and our foundation models are developed.
Retrieved 02 12, 2025, from OpenAI: https://help.openai.com/en/articles/
7842364-how-chatgpt-and-our-foundation-models-are-developed.

Schuman, C., Potok, T., Patton, R., Birdwell, D., Dean, M., Rose, G., & Plank, J.
(2017, May 19). A Survey of Neuromorphic Computing and Neural Networks in
Hardware. Retrieved 01 09, 2025, from https://arxiv.org/abs/1705.06963.

ZeroMQ. (2024). ZeroMQ. Retrieved 02 12, 2025, from ZeroMQ: https://
zeromq.org/.

	Simulation for Artificial Intelligence Modeling and Assessment
	INTRODUCTION
	AIRCRAFT MODELING & SIMULATION FOR AUTONOMY
	Supporting Decision Making Autonomy
	Integrating Data Capture Tools and AI Applications
	Simulating Aircraft Scenarios for Model Development

	LESSONS LEARNED
	CONCLUSION
	ACKNOWLEDGMENT

