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ABSTRACT

Transportation electrification plays a crucial role in the transition to green energy. As
households, businesses, and public entities increasingly shift from gas vehicles to
electric vehicles (EVs), the demand for charging infrastructure leads to a significant
rise in energy consumption. To effectively plan grid buildout, utilities need to rely
on granular geographic data to pinpoint when and where EVs will start to emerge
or grow in number on the grid. This process involves utilizing multiple models,
including detection models to identify existing EVs that are currently unknown to
utilities; propensity models to predict which customers are more likely to adopt
electric vehicles in the near future; and forecasting models to anticipate which service
areas will experience a greater rise in energy demand due to increasing EV adoption,
thus requiring more immediate attention. While there is overlap in data sources and
preliminary work on this topic, this paper outlines a blueprint for a bottom-up approach
that leverages diverse data to create multiple predictive models tailored to different
business needs.
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INTRODUCTION

Current estimates suggest that the world’s proven oil reserves can sustain
consumption for about 50 years (Osborne, 2024). Transitioning to
alternative energy sources is crucial. A significant trend is the shift from
gasoline to electric vehicles (EVs), which reduces dependence on petroleum
and supports development post-depletion. Clean energy sources like solar,
wind, and hydrogen help slow climate change. In 2016, transportation
surpassed electric power as the leading source of carbon emissions,
accounting for 28% of total emissions. Widespread adoption of electric
vehicles and renewable energy could reduce global transportation emissions
by 80% to 90% by 2050, requiring significant infrastructure and policy
changes (PBS Science, 2022). Additionally, driverless cars represent a new
direction in development, and it is believed that electric vehicles can operate
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more efficiently than traditional internal combustion engine (ICE) vehicles
(Westbrook, 2022).

EVs can be charged at public chargers, onsite, and at home. Simultaneous
charging by multiple EVs may overload the power grid (Osaka, 2022).
About 80% of residential EV charging occurs at night. As more households,
businesses, and public entities switch to EVs, the demand for charging
infrastructure and energy consumption rises. This increased EV load impacts
key power grid components, potentially overwhelming the system and
requiring utilities to supply more power (Brown, 2022).

Most utilities’ current grid infrastructure was not designed to
accommodate the widespread adoption of electric vehicles and cannot
handle the increased load. This necessitates costly measures such as peak
plants and unplanned upgrades, which address immediate issues but do
not support long-term planning, potentially wasting resources and causing
customer dissatisfaction. For instance, without understanding the increased
EV demand, a crew might replace a failed transformer with one of the
same specifications, leading to a similar failure in the near future. Timely
and appropriate upgrades can mitigate issues like power outages, voltage
fluctuations, and compromised system stability. To achieve this, utilities need
to know where and when EV adoption has occurred, will occur and at what
pace and scale. This paper introduces a bottom-up approach for building
multiple predictive models to address this need.

BOTTOM-UP APPROACH VS TOP-DOWN APPROACH

Effective long-term grid planning necessitates a precise understanding of
historical, current, and future events. The top-down approach has been
widely used in predicting or forecasting the future. It usually starts with
a broad overview and then breaks it down into smaller, more detailed
components. In grid planning associated with transportation electrification,
it typically proceeds as the following:

. Identify the main goal for the number of EVs in the service area by a
certain year.

. Identify key drivers that influence this overall goal. These drivers could
include economic indicators, demographic trends, etc.

. Create a predictive model using the aggregated data and key drivers.
These models provide a broad forecast or prediction based on overall
trends and patterns.

. Break down the high-level predictions into smaller, more specific
components. For EV adoption, this involves disaggregating the overall
forecast to the level of substations or even circuits.

While the top-down approach offers multiple benefits such as simplified
implementation, rapid decision-making, and a clear overview, it also has
disadvantages, including a lack of detail and rigidity, making it less adaptable
to changes or new information that emerges from the ground level.

For EV adoption, leveraging customer data such as load patterns and
demographics can enhance predictions. A bottom-up approach utilizes
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customer-level predictions to help utilities geographically identify when and
where electric vehicles (EVs) will begin to appear or increase in number on the
grid. These predictions can then be aggregated to the levels of transformers,
circuits, and substations. This approach provides detailed analysis and is
more adaptable and updatable with new data. However, developing such
models requires the collection and processing of very granular - and therefore
much larger - data. Consequently, it is more time-consuming, complex, and
resource-intensive.

RESIDENTIAL CUSTOMERS VS NON-RESIDENTIAL CUSTOMERS

Modeling for residential customers can differ significantly from modeling for
non-residential customers, due to the following reasons:

1) Data are different. Data of electricity load are important predictors
for utilities. Residential customers typically have peak electricity
usage in the morning and early evenings when people are at home,
using appliances, heating/cooling systems and lighting. In contrast,
non-residential customers such as businesses, industrial facilities and
government entities, usually have more consistent and predictable
electricity patterns, often peaking during standard business hours.

2) The consumption patterns of residential customers often show
significant seasonal variations, with higher usage in summer and winter
due to heating and cooling needs. Consumption by non-residential
customers is less affected by seasonal changes.

3) Residential load profiles are generally more variable and less predictable
compared to non-residential customers. Non-residential customers tend
to have higher base load due to much more space in facilities, continuous
operations of equipment, lighting, and HVAC systems.

4) Many utilities leverage socio-demographic data such as age, income and
education level to help with enhancing customer services and to improve
overall customer satisfaction. Such data do not apply to non-residential
customers. Due to differences in data availability and purposes, we lay
out the frameworks for multiple models as follows:

- Detection models for residential customers and non-residential

- Propensity models for residential customers and non-residential
customers

- Forecasting models for residential and non-residential customers.

While there is overlap in data sources, this paper outlines a blueprint
for leveraging diverse data to create multiple predictive models tailored to
different business needs.

MODLES

EV Detection Models

An EV detection model can be highly beneficial for utilities in multiple
ways. By identifying when and where EVs are charging, utilities can better
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understand the impact on the grid and plan for immediate infrastructure
upgrades to pre-empt some overloads. Utilities can also design targeted load-
shifting programs to encourage off-peak charging, reducing strain on the grid
during peak hours. With accurate data on EV usage, utilities can personalize
communication and offer incentives for EV owners to participate in demand
response programs.

Most people charge their vehicles after work and try to stay away from
peak hours to mitigate cost. Charging of an EV at home will cause a surge in
the load as illustrated below. There are strong differences in the load curves
between customers with EVs and those without.

Load Curve
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X 100 — non-EV Customers
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Figure 1: Compare load curves of residential customers with EVs and without EVs.

Due to the strong difference in load patterns, features can be generated
based on the differences in load, which can then serve as predictors for a
detection model. This model can provide a rough estimate of where current
residential customers with EVs are located and identify which parts of the
circuit require attention or upgrades. Southern California Edison (SCE) has
launched several programs to encourage customers to install electric chargers
at home and offers rebates to those who have purchased or rented an
electric vehicle. Additionally, a point-of-sale coupon was issued to customers
purchasing an electric vehicle. These customers who applied for rebates
constitute the target variable for our model. We can employ machine learning
and deep learning methods to build the detection model. The model will
generate a softmax score, resembling a probability score, for us to identify
customers with higher scores as likely having EVs that are not yet detected
by utilities (Lin et al., 2022).

Detection model for non-residential customers could be more challenging
as load patterns between non-residential customers are much more diverse,
due to differences in business types, operation hours, etc. Also, EV charging
in a residential home usually causes a surge in the load, the same pattern
might not be observed among non-residential customers as the base load
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from normal business operation is usually quite high already. One feasible
approach might be the following:

As light-duty, medium-duty and heavy-duty vehicles are generally in use
in daytime and being charged at night, we can expect the load patterns
will experience significant changes at night. If a non-residential customer
shows a significant difference between daily and nightly load, evening
EV charging might lead to an increase in usage. We can compare loads
from two timeframes: the current period and a period from the same
season five or six years ago. If the nightly load in the current period
consistently exceeds the load from the same time five or six years ago by
a noticeable margin for at least a few hours, the non-residential customer
can be suspected to have electric vehicles being charged on the premises.

For validating the detection models to identify existing EVs that are
currently unknown to utilities, we can leverage data from local Department
of Motor Vehicles (DMV), which includes all registered vehicles and identifies
electric vehicles. Although we have received aggregated data at the zip
code level, we can still perform validation by aggregating customer-level
predictions to the zip code level and conducting a correlation analysis with
the DMV’s aggregated data. Additionally, we can randomly select customers
identified as having EVs and examine their load patterns to determine if they
align with our expectations.

EV Propensity Models

A propensity model predicts which customers are more likely to adopt
electric vehicles in the near future. An immediate application of this model
is to expand Time-of-Use (TOU) rates for managed charging, to decide
optimal locations for installing public charging stations and to provide other
infrastructure development in the near future.

We can use known and detected residential EVs as the target variable for
building a propensity model. For residential customers, demographic data
can be quite useful in predicting which segments are more likely to transition
to electric vehicles. Research has found that younger generations, such as
Gen Z and Millennials, show higher interest in EVs compared to older
generations. Men are twice as likely to buy EVs as women. Since EVs are
still more expensive than gas cars, households with higher incomes are more
likely to consider this purchase (US Department of Energy, 2024). Apart from
household-level data, aggregated data such as school quality and crime rate
can be added to enhance the power of the model.

Agent-based theory can be creatively used to develop additional features
for the propensity model and subsequent forecasting model. Agent-based
theory is a framework that examines how individual actors, or agents,
influence social, political, and economic systems. It emphasizes the
importance of understanding the behavior of individual actors, who impact
each other in significant decisions, such as purchasing an EV or installing
solar panels on rooftops. Customers living in or passing through areas
with EVs are more likely to be influenced to make similar purchases.
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However, generating quantifiable features by using agent-based theory can
be challenging. We suggest doing the following;:

. Demographic data, such as those provided by Acxiom, offer multiple
composite clusters, including economic stability, income level and home
price. A consumer passing through neighboring areas with more EVs
is more likely to be influenced to buy an EV. By using the same set of
demographic features, we can calculate the demographic similarity of one
area to its neighboring areas. The influence of neighboring areas can be
weighted by their population size, distance to the area in interest, etc.

« The more homogeneous the customers in an area are, the more likely
they will exhibit similar consumption behavior. We can refer to this
as inner agent-based behavior, treating an area as containing multiple
sub-areas where each sub-area indicates customers share similar socio-
demographics and, consequently, similar consumption behavior. We can
derive multiple features by using the standard deviations of various
cluster variables as additional features for modeling.

Modeling commercial EV adoption requires distinct methods due to
the different types of data available. Southern California Edison (SCE)
has proactively engaged with non-residential customers, particularly those
operating medium-duty and heavy-duty fleets. Through these efforts, the
following data have been collected:

« Those non-residential customers who have their charging ports energized
for use.

« Those non-residential customers who have their charging ports in design
in collaboration with SCE.

« Those non-residential customers who have made inquiries to SCE about
electrification need.

The customers mentioned above have expressed varying levels of need and
urgency for electrification. Their different stages of activity can be treated
as ordinal target variables. SCE has a database that classifies almost all
non-residential customers according to NAICS codes. The North American
Industry Classification System (NAICS) is a standardized system used to
classify businesses by industry for the purpose of collecting, analyzing, and
publishing statistical data. From companies known to have shown interest in
electrification, we can identify similar companies within the service territory
and make projections accordingly. This approach enables us to identify the
key drivers of commercial EV adoption and evaluate the pace and scale of
EV diffusion across different sectors.

Although propensity model is still a classification model and the prediction
is made at the customer level, we can aggregate customer-level prediction to
circuit level or substation level for grid planning.

EV Forecasting Models

Both detection models and propensity models generate customer-level
predictions. Forecasting models are conducted at an aggregated level such
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as circuits or substations. It differs from propensity model that a forecasting
model usually contains a projection into the future with a clear time frame
such as next five years, next ten years and beyond. Forecasting model
anticipate which service areas will experience a greater rise in energy demand,
thus requiring more attention.

There are multiple ways to build a forecasting model. The challenge we
have encountered is that there are very limited historical data we have.
Therefore, the conventional forecasting such as based on time series data
will not work well. Bass diffusion model is a good option to apply. This
model offers a powerful way to understand and forecast how innovations
spread over time (Bass, 1969).

New adopters

Imitators

Innovator

Number of new adopters

T T T T T T T T T T T T T T 1

Figure 2: Bass diffusion model.

The Bass diffusion model has been extensively utilized across various
industries to forecast product adoption, aiding in predicting trends and
informing crucial business decisions. It has been applied to generate
forecasting models for solar photovoltaic rooftop penetration and the electric
vehicle market in Morocco, among others (Pratiwi et al., 2022; Avyyadi et al.,
2018). In the realm of transportation electrification, the Bass diffusion model
distinguishes between adopters and imitators. Adopters are those who readily
embrace electric vehicles early on, often leading the market in electrification.
Imitators, on the other hand, are influenced by the actions of innovators and
their peers to transition to electric vehicles. The mathematical equation of the
Bass Diffusion Model is as follows:

f(t)

T_Fo) p + qF()

where
F(t): cumulative adoption function
f(t): rate of adoption
p: coefficient of innovators
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q: coefficient of imitators When considered a s function of continuous
density over time, the Bass diffusion equation can be written as follows:

n(t) = (p + Ty x (m — N (1))

where

n(t): number of EVs in year or month

N(t): cumulative number of EVs in year or month

p: coefficient of innovators

q: coefficient of imitators

m: number of potential customers in the market The above equation will
provide a framework for estimating EV adoption on a yearly or monthly
basis. Given the limited historical data on EV adoption in our study, it
is essential to combine optimal forecasting methods to achieve accurate
results. Southern California Edison has obtained data from the California
Department of Motor Vehicles on the number of electric vehicles registered
across around 700 zip codes within its service area. These zip codes do not
map well to around 600 substations in the service area, but we can apply
data massage to run the allocation to aggregated EV ownerships to each
substation. Doing this allows us to infer N(¢) and n(z) over time. Additionally,
by utilizing NAICS codes, we can identify which non-residential customers
are likely to own fleets and determine their fleet sizes. Consequently, the
number of potential consumers in the market, », is known. Therefore,
estimating the parameters p and g becomes crucial for successfully building
a forecasting model.

We will apply Monte Carlo simulation to help to understand the trend
of EV adoption among residential and non-residential customers. Monte
Carlo simulation is a computational technique that uses repeated random
sampling to model the probability of different outcomes in a process that
involves uncertainty. The output shows the spectrum of probable outcomes
for an uncertain scenario. This technique assigns multiple values to uncertain
variables, obtains multiple results, and then takes the average of these results
to arrive at an estimate. We can also use estimates in different positioning in
a confidence interval as different scenarios generated by the simulation.

Government incentives often assist commercial customers in transitioning
to electric vehicles by reducing the financial burden and supporting the
development of necessary infrastructure. These programs significantly
influence the speed and pace of EV adoption. However, the availability and
stability of these incentives can fluctuate with changes in the political climate.
Therefore, it is crucial to incorporate these considerations into the forecasting
model by evaluating different scenarios.

Even though the forecasting model is not built at the customer level, the
process can be quite complex. If grid planning is to be done at the substation
level, the forecasting needs to be provided at the same level to meet the specific
needs of each substation. Given that Southern California Edison operates
over 600 substations, it is necessary to develop individual local models for
each one.
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CONCLUSION

This paper lays out a blueprint for a bottom-up approach to build detection
models, propensity models and forecasting models of EV adoption among
both residential customers and non-residential customers. Even though
models for residential customers and non-residential customers are to be
built separately, the prediction will be combined and aggregated to the
levels of circuits or substations for grid planning. This integrated approach
ensures that the unique characteristics and adoption patterns of each
customer segment are accurately captured. By aggregating these predictions,
utility companies can optimize grid infrastructure investments, enhance load
management strategies, and support the seamless integration of electric
vehicles into the power grid.
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