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ABSTRACT

Digitalization is fundamentally transforming the manufacturing industry, leading to
the development of intelligent factories, known as Smart Factories. These form the
core of Industry 4.0 and combine innovative technologies such as the Industrial
Internet of Things (IIoT), Cyber-Physical Systems (CPS), Machine Learning (ML),
Artificial Intelligence (AI) and Big Data to maximize efficiency, flexibility and resource
conservation. This paper provides a comprehensive overview of the Smart Factory
as a central element of the Fourth Industrial Revolution (Industry 4.0). It presents key
digitalization methods as well as technological innovations and approaches that have
been developed over more than a decade of continuous progress in Industry 4.0 and
digitalization. Finally, an insight into current research at University of Applied Sciences
Bochum is provided, focusing on the application and practical implementation of
intelligent technologies in the manufacturing industry. The emphasis is on solution
approaches for the realization of smart production processes that equally address
technical, social and economic requirements.
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INTRODUCTION

After more than a decade of technological progress and developments in the
context of Industry 4.0, digitalization is progressing steadily. Characterized
by the use of innovative technologies and digital networking, the fourth
industrial revolution marks a decisive turning point. It is increasingly
becoming a key factor for companies to remain successful and fit for the
future in a highly competitive market environment (Nikelowski & Wolny,
2020). The systematic planning of a networked factory is made possible
through the targeted use of modern methods and tools. This takes into
account a variety of framework conditions, integrates all elements of the
value chain and at the same time creates the basis for self-controlling and
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autonomous company processes. The so-called smart factory uses state-of-
the-art technologies to not only achieve operational goals efficiently, but
also to fulfill social and economic functions by seamlessly connecting the
physical and virtual worlds (Nikelowski & Wolny, 2020). As part of the
digital transformation, complex, interactive and autonomous systems are
being created, for example through the use of brownfield methodology. These
enable a more efficient and powerful optimization of existing structures
as well as business and production processes by specifically upgrading
and integrating existing potential (Nikelowski & Wolny, 2020; Hopkins
& Jenkins, 2008; Stock, 2020). With the help of cyber-physical systems,
physical devices and processes in established production landscapes can
be equipped with computing and network capabilities and connected to
a data and knowledge structure that is ultimately integrated into the
manufacturing process (Nikelowski & Wolny, 2020; Pedone & Mezár,
2018; Gönnheimer et al., 2022). The use of algorithms for industrial big
data and advanced technologies enables the optimization and adaptation of
manufacturing processes. In this dynamic development, self-adaptive, self-
learning and autonomous systems can help to successfully overcome the
challenges of rapid technological progress and increasing product complexity.
The integration of information technologies and operational technologies
is crucial to achieving the overarching goal of digitalization in established
industries. In this context, there is a particular focus on creating conditions
that can fulfill not only operational goals but also social and economic
functions within a factory (Heuser et al., 2017; Jaspert et al., 2021). This
requirement suggests that the redesign of a digital factory must, on the one
hand, ensure the smooth technical and economic flow of the production
process and, on the other hand, also create optimal working conditions
for the personnel in the factory (Bauernhansl et al., 2014; Etz et al., 2020;
Wischhusen, 2023).

Smart Factory

The smart factory, a core component of Industry 4.0, is a digitally
enhanced production environment where new processes and business models
are tested. It represents a significant advancement in traditional factory
automation, offering modernization and optimization opportunities for
heterogeneous, legacy machine parks. Seamlessly integrating information
systems with operational systems, external components and the surrounding
environment, the smart factory unites production, maintenance and logistics.
Real-time data exchange between decentralized machines, systems and
logistics enables autonomous production control, fostering flexible and
efficient manufacturing. Key enabling technologies include the Industrial
Internet of Things (IIoT), cyber-physical systems (CPS), machine learning
(ML) and industrial big data, facilitating dynamic management of object
properties. Real-time data from sensors and IoT devices, termed big
data due to its volume and velocity, provides insights into machine
condition and production progress (Bauernhansl et al., 2014). Data analytics,
including descriptive, predictive and prescriptive analysis, further enhances
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efficiency and flexibility by enabling proactive problem-solving and process
optimization. The smart factory’s self-organization and decentralization
support efficient production of highly individualized products, even in small
quantities. This requires real-time data collection, analysis and visualization
across the networked value chain, enabling materials, machines, storage and
logistics to communicate directly. Decisions are made at the lowest possible
level of the automation pyramid, optimizing the value stream and extending
beyond individual companies to create innovative value creation networks
(Bauernhansl et al., 2014; Jahid et al., 2023; Soori et al., 2023).

Historical Background and Development

Industrial development is a dynamic process that has shaped the
transformation of the world of work and production methods over several
centuries. From the transition from manual production to mass production
to the introduction of intelligent, networked systems in Industry 4.0,
technological breakthroughs have significantly changed the way goods are
produced and services are provided. The so-called industrial revolution can
be divided into four phases, each of which is characterized by groundbreaking
innovations and profound upheavals. While the first three phases - Industry
1.0, 2.0 and 3.0 - have already been completed, humanity is currently in the
fourth phase, Industry 4.0. The first industrial revolution (from around 1780)
ushered in the mechanization of production with the steam engine, making
manufacturing independent of natural energy sources possible for the first
time. The early industrialization of Industry 2.0 (from around 1830) brought
a massive increase in production capacities and advances in telecommu-
nications thanks to electricity and assembly line work. The third industrial
revolution (from around 1970) led to the automation of processes with
computers and information technology and laid the foundations for digital
business models. Finally, the fourth industrial revolution (since the end of
the 20th century) through the introduction of the internet and the associated
progressive digitalization is networking production systems through the use
of modern technologies such as the Internet of Things (IoT), automation,
artificial intelligence (AI) and big data. This enables highly flexible smart
factories and accelerates globalization. Compared to the long development
cycles of previous revolutions, Industry 4.0 is characterized by a rapid
innovation dynamic that is fundamentally changing production processes and
value chains (Heuser et al., 2017).

Key Technologies of the Smart Factory

Building upon the previous chapter’s discussion of industrialization’s
emergence and phases, this section examines the efficient transformation
of existing production facilities into smart factories, driven by increasing
digitalization and networking. A comprehensive overview of the current
state-of-the-art in smart factory technology is presented, analyzing key
components like data generation, analysis and inter-machine communication
(Rocha et al., 2023). Transformation methodologies, including the
brownfield approach and digitalization frameworks are considered.
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Specifically, the greenfield, brownfield and bluefield approaches are detailed,
illustrating how these strategies facilitate targeted planning and optimization
of digital production transformation while fostering future innovation.

Greenfield: In production facility development, the greenfield approach
denotes a complete redesign and implementation from scratch, analogous
to building on a “green field.” This allows for the elimination of legacy
system limitations and the integration of cutting-edge technologies and
optimized processes.While offeringmaximum future-proofing, it necessitates
comprehensive analysis, redesign and reorganization, potentially leading to
longer project durations and higher costs. This clean-slate approach enables
the rethinking of complex systems and the streamlined incorporation of new
automation solutions (Hopkins & Jenkins, 2008; Gönnheimer et al., 2022;
Jaspert et al., 2021; Etz et al., 2020; Wischhusen, 2023).

Brownfield: The brownfield approach, in contrast to greenfield, focuses
on modernizing existing production facilities while preserving core processes
and systems. It involves adapting data and processes to a new digital
environment rather than implementing a complete overhaul. This approach
enables the integration of current technologies into older machinery,
regardless of age, potentially through a “big bang” migration requiring
meticulous planning and prior validation of existing functionality within
the new environment. Primarily aimed at optimizing and expanding existing
automation, brownfield offers a cost-effective alternative to complete
replacement, improving efficiency and functionality while adhering to current
technical and legal standards (Hopkins & Jenkins, 2008; Gönnheimer et al.,
2022; Jaspert et al., 2021; Etz et al., 2020; Wischhusen, 2023).

Bluefield: The approach offers a hybrid migration strategy, balancing
the benefits of greenfield and brownfield implementations. It selectively
integrates existing, proven system components with modern technologies,
replacing obsolete elements. This allows for a gradual, non-disruptive
transition, avoiding a “big bang” overhaul. By retaining valuable assets
and strategically introducing new features, bluefield minimizes risk and
optimizes resource allocation. It supports both process modification and new
implementation, leveraging existing system knowledge. Data migration can
be tailored to specific needs, ranging from selective to full historical transfer.
This balanced approach ensures a cost-effective and timely modernization
process (Jaspert et al., 2021; Etz et al., 2020; Wischhusen, 2023).

Architecture and Frameworks

After the various transformation methods, this section presents digitalization
architectures and frameworks. The increasing global networking of
production resources and processes necessitates the adoption of standardized
frameworks. These frameworks provide concepts, methods and guidelines
for designing future organizational structures, production systems and
business processes in the context of Industry 4.0 digital transformation.
Standardization frameworks such as the automation pyramid, the Reference
Architecture Model Industry 4.0 (RAMI 4.0, 2014) and the Industrial
Internet Reference Architecture (IIRA, 2015) are crucial for managing
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the complexity of this transition and ensuring strategically aligned
implementation (Pedone & Mezár, 2018).

The automation pyramid is a central concept in industrial control
technology that describes the hierarchical structure of automation systems
in production. It is used to systematically classify the various levels, starting
with field and process automation at the lowest level right up to strategic
company management at the top. This structure enables efficient control and
optimization of production processes. At the lowest level, sensors, actuators
and controllers monitor the production processes in real time. Above
this, control and process control systems coordinate machines and systems
in order to optimize production processes. The operations management
level comprises manufacturing execution systems (MES), which manage
production orders, resources and schedules and thus establish the link
between operational control and corporate goals. At the corporate level,
strategic decisions are made that influence the entire manufacturing strategy.
Here, Enterprise Resource Planning (ERP) systems link business processes,
while Production Planning and Control (PPC) handles resource planning,
including Material Requirement Planning (MRP I) and Manufacturing
Resource Planning (MRP II) (Heuser et al., 2017).

RAMI 4.0 and IIRA are two central reference architectures for Industry
4.0 that differ in their development, structure and application. RAMI 4.0
was developed as part of a politically driven initiative and is based on the
smart grid architecture model. It represents a three-dimensional cube model
that describes Industry 4.0 components along three axes. The hierarchy axis
integrates automation levels up to the enterprise control system, the layer
axis comprises six levels for the detailed description of plants and systems
and the life cycle and value stream axis follows the IEC 62890 standard
by distinguishing between types (design and prototyping) and instances
(production and use). RAMI 4.0 enables a step-by-step migration of existing
production systems to a networked Industry 4.0 environment and places
particular emphasis on end-to-end, lifelong data management. This includes
not only physical assets such as machines, but also intangible components
such as production plans or control data.

In contrast, IIRA was developed by industry and focuses on the
information flows within the Industrial Internet system. The architecture
is divided into four viewpoints that represent the different perspectives of
the stakeholders. The Business Viewpoint links business objectives with
regulatory framework conditions, while the Usage Viewpoint describes the
planned use of the system based on typical processes. The Functional
Viewpoint defines the functional components, interfaces and interactions,
while the Implementation Viewpoint specifies the technical implementation
and integration of the components. IIRA primarily considers physical objects
and focuses on demand-oriented data collection for specific use cases such as
big data analyses or process control (Pedone & Mezár, 2018).
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Digitization and Data Transformation

In order to gain a comprehensive understanding of digital transfer and the
technological elements that make up a smart factory, the current state of the
art in this area is examined in detail below (Rocha et al., 2023).

Cyber-physical systems (CPS) are highly integrated systems that combine
physical and digital components, enabling them to work in close
cooperation. These systems decentralize and automate processes, particularly
in manufacturing environments. By integrating CPS with embedded systems,
they can communicate via the internet and utilize online services. CPS use
sensors to collect physical data and actuators to influence processes, storing
and evaluating this data to interact with both the physical and digital worlds.
CPS can be networkedwith various objects, devices, buildings, transportation
means or production facilities and they often feature multimodal human-
machine interfaces for communication and control, such as speech or
gestures. When CPS interact in production or logistics, they form cyber-
physical production systems (CPPS) or cyber-physical logistics systems
(CPLS), acting as autonomous, intelligent units. Each unit is represented
by a plant agent, which serves as the interface between the Industry 4.0
agent system and the physical plant. CPS are used across industries such
as healthcare, transportation, energy and manufacturing, enabling the
automation, monitoring and optimization of complex tasks (Heuser et al.,
2017; Bauernhansl et al., 2014; Rocha et al., 2023).

The Internet of Things (IoT) refers to a network of physical
objects or “things,” equipped with unique identities and capable of
communicating, exchanging information and coordinating decisions. These
objects, integrated with sensors, software and other components, interact
with other devices and systems via the internet. IoT technologies enable
the harmonization of diverse systems, even from different manufacturers,
facilitating communication and automation without external intervention.
IoT applications can range from everyday household devices to complex
industrial machines. These “smart devices” have electronic intelligence
that allows them to perform automated tasks and communicate over the
internet. IoT is divided into private and industrial applications. In the
private sector, it focuses on enhancing convenience through the networking
of devices, such as smart home systems. In the industrial sector, it
aims to automate processes, improving efficiency and reducing costs by
enabling machines to self-organize. Industrial IoT applications include
intelligent manufacturing, networked assets, preventive maintenance, smart
grids, smart cities, networked logistics and digital supply chains. IoT
technologies are widely used inmanufacturing, automotive, retail, healthcare,
transportation and logistics. By integrating IoT, businesses can improve
process management, enhance productivity, create new revenue streams
and optimize operations. This connectivity between the physical and digital
worlds increases competitiveness, improves quality control and minimizes
losses (Heuser et al., 2017; Jahid et al., 2023; Tran et al., 2022; Baker, 2023).

Digitaltwin: A digital twin is a virtual representation of a physical object,
system, plant or process. This technology enables the capture and simulation
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of complex, dynamic environments. In a “cyber-physical” model, users
interact with a digital replica of the production environment, which is
continuously updated with real-time data, including static and dynamic
information, behavioral patterns and interactions. Digital twins allow for
the simulation of real-world objects and processes, enabling scenario testing,
impact prediction and risk reduction before physical prototypes are created.
This capability enhances decision-making, improves efficiency and fosters
innovation. To develop a digital twin, clear framework conditions and precise
software definitions are needed to ensure accurate replication of real-world
objects in terms of status, properties and processes. With advancements
in artificial intelligence and machine learning, digital twins will play an
increasingly vital role across industries, offering greater precision, knowledge
and agility for decision-making and innovation (Soori et al., 2023(12,16)).

Blockchain technology has established itself as a key innovation in
the areas of digital currencies and business processes. It is based on
a decentralized database that enables secure replication, sharing and
synchronization of data regardless of location or organization. A key feature
is the lack of a central administrator, as consensus algorithms control
transaction validation in a peer-to-peer network. All transactions are stored
in an immutable blockchain that is continuously expanded. The decentralized
network protects the stored data from manipulation and unauthorized
modification. A blockchain network can consist of anywhere from a few to
millions of nodes. Transactions are only permanently recorded in the ledger
once a consensus has been reached by the majority of nodes. In smart factory
environments, blockchain can play a key role by enabling secure, transparent
storage and management of data. Its security features, such as distributed
consensus, cryptography and smart contracts, help to ensure data integrity,
confidentiality and authentication. Smart contracts can also automatically
detect and defend against security threats (Perera et al., 2020; Rajasekaran
et al., 2022; Masood et al., 2023).

Artificial intelligence (AI) is a subfield of computer science focused on
replicating aspects of human cognition through computational models. It
encompasses methods that enable machines to perceive, understand and
process information, as well as learn from data to improve performance
over time. AI is generally classified into weak AI, which assists humans in
specific tasks and strong AI, which aims for autonomous decision-making
with human-like capabilities. Key advancements include machine learning
(ML) and deep learning (DL), both of which drive modern AI applications
(Baker, 2023).

Machine learning is a branch of AI that enables systems to identify patterns
in data and make predictions or decisions without explicit programming.
Based on training datasets, ML algorithms refine their models iteratively,
adapting to new information. Depending on human involvement, learning
can be supervised or unsupervised. ML is widely applied in robotics,
anomaly detection in industrial processes and autonomous vehicles, utilizing
various data types, including text, images and sensor inputs (Baker, 2023;
Esposito et al., 2019).
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Deep learning is an advanced subset of ML that relies on artificial neural
networks (ANNs) with multiple layers to process large datasets. It mimics
biological neural networks, where information flows through interconnected
neurons, weighted based on learned importance. Deep learning algorithms,
such as convolutional neural networks (CNNs) and long short-term memory
(LSTM) networks, enhance capabilities in image recognition, natural
language processing and predictive analytics (Baker, 2023).

Robotics According to DIN 8373 (1996), industrial robots are defined as
manipulators with at least three programmable axes. This broad definition
has led to various designs, which are mainly categorized into industrial and
service robots. Industrial robots are versatile, programmable machines used
for handling, assembly or processing tasks in industrial environments, such
as automotive manufacturing. They typically consist of a manipulator (robot
arm), control unit and effector (tool or gripper). Service robots, as defined
by the International Federation of Robotics (IFR) based on ISO 8373:2012,
provide semi- or fully autonomous services that enhance the well-being of
people and equipment but do not involve manufacturing processes. Examples
include pool cleaners, vacuuming robots and lawnmowers (Etz et al., 2020).

Gateways serve as interfaces between incompatible systems by utilizing
hardware or software components to enable communication. The term
originates from computer science and information technology. Non-
compliant networks operate with different communication protocols and
addressing methods, requiring protocol conversion to facilitate data
exchange. In this process, incoming data is translated by the gateway before
being forwarded to the target network. A common example is a DSL router
or network switch that connects a local area network (LAN) to the Internet.
Additionally, gateways enable interoperability betweenmobile networks with
varying architectures (Etz et al., 2020).

Radio Frequency Identification (RFID) Radio Frequency Identification
(RFID) is a key technology for tracking products and material flows in
manufacturing. It enables the electronic assignment of digital identities to
physical objects and facilitates machine-to-machine (M2M) communication
using tags and readers. As a passive technology, RFID tags lack intrinsic
intelligence; they respond to interrogation signals from a reader, which
transmits the data to a database for object identification within a range of
10 cm to 200 meters. RFID tags can be active (battery-powered), passive
(battery-free) or semi-passive (battery-assisted). High Frequency (HF) and
Ultra High Frequency (UHF) RFID systems ensure precise product tracking.
The integration of RFID with sensor technology and communication
protocols like ZigBee, Bluetooth andWireless LAN has advanced the Internet
of Things (IoT). Modern RFID systems enhance data transparency, optimize
material flow and improve process planning, leading to greater efficiency and
cost savings in manufacturing and logistics (Heuser et al., 2017; Bauernhansl
et al., 2014; Baker, 2023; Zhong et al., 2013).

Message Queue Telemetry Transport (MQTT) IBM has developed the
MQTT message protocol, which is specially designed for data transmission
in applications in the consumer market. It is currently widely used, for
example in office and home automation and in the healthcare sector. MQTT
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is also attractive for low-power and low-latency applications, especially those
based on wireless devices (e.g. smartphones). The protocol is designed to
“transport” data. Therefore, no differentiation/organization of data types
is provided in the protocol specification. The MQTT architecture is based
entirely on the publish/subscribe model. For example, a client cannot freely
read variables, but must wait for the system to publish the information.
According to the MQTT specification, the device can participate in the data
exchange either as a server or as a client. The server is the message broker that
manages and transmits the messages. It forms the center of the architecture to
which all clients are related. The MQTT server is also referred to as a broker.
On the other hand, a client can act as a publisher (sender) and/or subscriber
(destination) of messages (Silveria & Sestito, 2019).

Mobile technology 5G, the fifth generation of mobile communication
technology, offers significant advancements over its predecessor, 4G,
particularly in speed, capacity, latency and connectivity.With speeds up to 20
Gbit/s (Enhanced Mobile Broadband, eMBB), 5G vastly outperforms 4G. It
also features a latency of under 1millisecond and 99.9999% reliability (ultra-
reliable low-latency communication, uRLLC), enabling applications like
augmented reality, virtual reality and autonomous driving. Additionally, 5G
supports high device density, with up to 1million devices per square kilometer
(massive machine type communication, mMTC). In industrial settings, 5G
enables efficient integration of numerous sensors and devices, reducing
infrastructure costs. It is particularly beneficial for sensors that create digital
twins of plant components. However, to ensure coverage and reliability,
private networks using licensed spectrum and specialized equipment are
required. 5G also features network slicing, allowing the division of
applications into separate logical networks for efficient resource use (Jahid
et al., 2023; Soori et al., 2023; Ahrend et al., 2021; Capgemini, 2023).

Research University of Applied Sciences Bochum

The BO Smart Factory research initiative at Bochum University of Applied
Sciences aims to implement the production process for assembling pico
satellites with the help of a prototype smart factory system. In collaboration
with the space project at Bochum University of Applied Sciences, the
automated assembly of the satellites is carried out in predefined assembly
steps. The manufacturing system developed will be equipped with the
advanced technologies described in this paper in order to further develop
the current state of the art and research. The manufacturing process
will be realized by the coordinated cooperation of traditional industrial
robots, collaborative robots and mobile robots (AMRs). The brownfield
methodology is used to plan the production system, in combination with
a HOT approach. The V-model is used to develop the production processes,
supplemented by agile methods from software development. In future, the
project will offer companies the opportunity to automate and digitalize their
heterogeneous production facilities and processes in a real test environment.
This test environment also serves to test new processes, business models and
methods in the context of Industry 4.0, with a focus on the sustainable
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implementation of efficiency measures under realistic conditions. The
test environment addresses current challenges facing companies, such as
demographic change, a shortage of skilled workers and high investment
costs with limited expertise. It enables the realistic simulation of a modern
factory system that can then be integrated into the company’s operational
structures (Gönnheimer et al., 2022; Capgemini, 2023; Reich et al., 2022;
Wee et al., 2016).

CONCLUSION

This paper provides an overview of the digital transformation towards
a smart factory within the context of Industry 4.0, comparing methods,
explaining technologies and presenting frameworks and guidelines for
digitalization. It highlights the impact of digitalization on the labor
market, emphasizing the growing automation of work processes. Driven
by digitalization and globalization, product life cycles and innovation
cycles are shortening to maintain competitiveness. In the future, robots
and software will increasingly perform tasks previously done by humans
in production, administration and services. Emerging technologies such as
artificial intelligence, quantum computing and blockchain will unlock new
business areas and transform existing models. The paper also discusses
research at Bochum University of Applied Sciences, which addresses these
challenges and supports companies in their digital transition. In collaboration
with industry, the university is developing guidelines implemented in its
prototype smart factory, providing a test environment for companies to
trial digital components in production. This smart factory utilizes cutting-
edge technologies to develop digital solutions for industrial production,
advancing the vision of intelligent factories. The work underscores that the
digital transformation has technological, economic and social implications,
necessitating sustainable and innovative development.
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