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ABSTRACT

Ensuring the integrity and efficiency of business process logic systems is critical
for industries such as manufacturing, infrastructure, and logistics. Even minor
vulnerabilities can lead to costly operational disruptions or security breaches.
While traditional fault detection methods rely on statistical quality assurance and
auditing, they are reactive and time-consuming, and even their diagnosis requires
downtime. To address these challenges, we introduce MetaBPL, an automated
framework that leverages a Large Language Model (LLM) within a Retrieval-
Augmented Generation (RAG) architecture for proactive fault detection and analysis.
MetaBPL systematically identifies discrepancies, assesses their impact, and generates
corrective recommendations. By improving the precision and scalability of fault
detection, this approach enhances business process security and operational
resilience while reducing reliance on extensive domain expertise.
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INTRODUCTION

Business logic systems form the backbone of operations for large-
scale companies and defense-critical workflows across industries such as
manufacturing, infrastructure, and logistics. These systems orchestrate
processes (ranging from production planning and quality management to
auditing and regulatory compliance) by integrating a diverse set of software
systems and natural language artifacts. A company’s Quality Management
(QM) system often spans multiple platforms, such as Manufacturing
Execution Systems (MES) for process modelling, Enterprise Resource
Planning (ERP), for material tracking, and a combination of digital and
paper-based logs for QM activities. Additionally, these processes are
often governed by internal protocols and external standards, such as
ISO-9000, further complicating the landscape. The heterogeneity of these
artifacts, coupled with unformalized domain knowledge and implicit human
requirements, presents significant challenges for ensuring the integrity and
security of business operations.

Vulnerabilities and faults in these systems can have widespread
repercussions. A single product recall might exceed ten million USD in losses,
while unplanned downtime in a manufacturing line could cost upwards
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of one million dollars per hour. Although statistical quality assurance and
auditing can help prevent future faults, incorporating real-time, large-scale
analysis could provide even greater insights and responsiveness. Moreover,
the manual identification and rectification of discrepancies in such complex
environments require a level of domain expertise that is not always readily
available. As a result, there is an urgent need for proactive and automated
solutions that can identify and analyze faults in business logic systems before
they escalate into major operational failures.

To address these challenges, we propose MetaBPL, a framework that
integrates a state-of-the-art LLM agent with a RAG architecture specifically
tailored for fault detection in business processes. MetaBPL operates by
first retrieving relevant context from a vector database, comprising artifacts
such as regulatory excerpts, industry standards, and internal documentation.
The system then dynamically generates fault detection queries based on
business logic-specific prompts. This dual approach allows the system not
only to identify discrepancies in complex rule hierarchies but also to offer
detailed fault analyses and corrective recommendations that incorporate both
formalized domain knowledge and elements of human intuition.

To facilitate a robust evaluation, we design an automated pipeline
that generates organizational documentation (such as Travelers, Work
Instructions, Bills of Material, Standard Operating Procedures, etc.)
typically used in internal business operations. Such documentation is often
proprietary and therefore difficult to access and share for evaluation
purposes. Our generative pipeline leverages a Large Language Model (LLM)
to automatically produce these documents based on a set of predetermined
definitions and properties.

To ensure the generated content remains consistent across documents, we
implement a feedback loop that revises the generated content and avoids
producing material that conflicts with previously generated outputs. Using
this approach, we built a small-scale benchmark comprising of seven sets
of products, with each set containing ten organizational documents (such
as Bill of Materials (BOM), Procurement and Supplier Management Policy,
Work Instructions, Assembly Line Processes, Traveler Documents, Quality
Assurance (QA) Policy, etc.). For each set, we deliberately inject faults,
selected from our established fault taxonomy, to create a ground truth for
systematic evaluation.

Our evaluation is based on three metrics: fault detection rate (percentage of
total faults found by MetaBPL), the correctness of LLM-generated responses
(balancing completeness and hallucination), answer accuracy with respect
to provided context, and the context retrieval quality that measures the
accuracy and conciseness of the retrieved context. Our evaluation, conducted
on a diverse corpus of synthetic organizational documents, demonstrates the
scalability and precision of our approach.

RELATED WORK

Fault identification and prevention is an effort that spans the entire lifespan
of a manufacturing process. Even stable, tested and well-designed systems
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can be disrupted by unanticipated events or interactions (Brecher et al.,
2009). Our approach grounds itself in three related aspects of manufacturing:
manufacturing standards and design, software modelling, and AI-based
enhancements.

Aligned with standards and design, we note the impact of documents such
as the ISO-9000 series documents responsible for outlining standards for
quality assurance (Marquardt et al., 1999). Since its original publication,
researchers have examined these standards from functional (Rogala et al.,
2021) and economic perspectives (Clougherty et al., 2014). These documents
serve as a global foundation for quality management systems; and in
part, we attribute our system’s analytic and generative capabilities to these
standardization efforts.

To ensure compliance, as well as to address the challenges of high-
volume and complex manufacturing processes, companies have come to
rely on software systems for Manufacturing Execution Systems (MES) and
Enterprise Resource Planning (ERP). These systems have been created to help
in record-keeping, analysis, and organization of manufacturing processes
(Shojaeinasab et al., 2022). Over time, they have undergone enhancements to
both their interoperability and the granularity of their representation, with a
long-term objective of creating a digital twin (Attaran et al., 2023; Jin et al.,
2024). While current tooling allows for highly detailed and synchronized
models (Cimino et al., 2019), there is ongoing research in enhancing these
aspects (Rogala et al., 2021; He et al., 2021). General techniques for
using these systems for the automation of tasks such as optimization and
fault discovery (Nguyen et al., 2016) are yet to be widely adopted. While
researchers have worked to develop fault ontologies (Liu et al., 2019), their
usage has been largely application-specific and focused on post-facto analysis
(Rajpathak et al., 2020).

The integration of artificial intelligence into manufacturing processes has
grown significantly in recent years. Computer vision and related technologies
are widely used for various tasks, including anomaly detection, counterfeit
identification, and assembly planning (Zhou et al., 2022). Traditional natural
language processing (NLP) methods have also been applied, particularly
for semantic anomaly detection. Busch et al., (2024) employed seq2seq
models to detect anomalies within business processes and analyze the
specifics of undesired behavior. Additionally, Sola et al. (2022) compiled a
large dataset of business process logic (primarily consisting of BPMN files)
designed to support generative AI methods in automating various aspects
of business workflows. More recently, large language models (LLMs) and
other generative AI capabilities have been explored for applications such as
product design (Liang et al., 2023), human-in-the-loop system development
(Makatura et al., 2024), and knowledge management systems (Kernan et al.,
2024).

METHODOLOGY

Fault Detection

The fault detection process (illustrated in Figure 1) begins with the ingestion
of a business or manufacturing document, which is then parsed into smaller,
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manageable chunks. Each chunk undergoes an initial background retrieval
step, where dynamic queries are used to extract relevant background
knowledge from a vector database (pre-populated). The dynamic queries are
formed based on the document’s contents. This contextual information helps
determine whether the document chunk aligns with established operational
standards or exhibits potential anomalies.

Next, the system enters the discrepancy detection phase. Here, a language
model (LLM) is prompted with both the document chunk and the retrieved
background snippets. The prompt explicitly instructs the LLM to assess
whether any discrepancies or abnormalities exist between the document
chunk and the background context. If a discrepancy is found, the LLM
provides a brief explanation describing its nature. This explanation is then
incorporated into a subsequent prompt that classifies the identified issue
by comparing it against a predefined set of known faults. By including the
discrepancy explanation in the classification step, the system ensures the LLM
has sufficient context to make an informed and accurate fault identification.

Figure 1: Fault detection pipeline. Background product documents are used to check
the candidate document for discrepancies. The discrepancies are classified to specific
faults against our fault taxonomy.

Once a fault is identified, the process moves to the severity and impact
assessment phase. The LLM evaluates the fault’s potential consequences on
the documented process, describing the worst-case scenario while also rating
the fault’s severity, urgency, and importance using predefined categories
(none, low, medium, or high). This combined quantitative and qualitative
assessment ensures a well-rounded evaluation of the associated risks.

To further enhance reliability, the system incorporates a self-reflection
step. At this stage, the LLM is presented with all relevant information
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from previous steps, including the document chunk, background snippets,
discrepancy explanation, fault classification, and impact assessment. The
LLM then reviews its own analysis, assigns a confidence score to indicate how
certain it is of its conclusions, and provides a brief rationale for its confidence
level. This self-reflection step helps to validate the consistency of the pipeline
while offering an additional layer of quality control by prompting the LLM
to reassess its reasoning.

This structured pipeline systematically identifies, classifies, and evaluates
faults within complex business and manufacturing documents. By integrating
background retrieval, discrepancy detection, fault classification, impact
assessment, and self-reflection, the system ensures a thorough and reliable
approach to assessing potential document issues. We depict our fault
detection pipeline in Figure 1.

Data Synthesis

The data synthesis system is a modular pipeline (illustrated in Figure 2)
that automates the generation of interdependent production documents
for a product. It leverages a local Large Language Model (LLM) hosted
on an Ollama1 server to generate documents based on dynamically
constructed prompts. These prompts incorporate hand-written general
document definitions, as well as automatically generated contextual
definitions dependent on the user’s specified product. The two types of
document definitions jointly specify the purpose, content, and structure of
the document, ensuring consistency across the production process.

A key feature is the use of a vector database (Chroma2) and a Sentence
Transformer model3 to embed and store document content and metadata.
This enables efficient retrieval of semantically relevant context for subsequent
documents. Instead of relying on static queries referencing only the product
name and document type, the system formulates dynamic queries using
comprehensive document definitions, ensuring accurate and context-aware
document generation.

The pipeline follows an optimized sequence, beginning with foundational
documents like the Bill of Materials (BOM) and the Procurement and
Supplier Management Policy. These provide critical details on parts,
materials, and suppliers, serving as references for later documents such as
Work Instructions, Assembly Line Processes, Traveler Documents, Quality
Assurance (QA) Policy, etc. Explicitly defined dependencies allow the system
to integrate relevant information from previous documents, maintaining
consistency throughout production documentation.

To enhance integrity, the system performs consistency checks. After
generating a document, it retrieves related documents from the vector
database and prompts the LLM to assess alignment with existing content. If
inconsistencies are found, an automated revision process ensures adherence
to required standards. We present the data synthesis pipeline in Figure 2.

1https://ollama.com/
2https://github.com/chroma-core/chroma
3https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://ollama.com/
https://github.com/chroma-core/chroma
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 2: Data synthesis pipeline. ‘Product description’ and ‘document definition’ are
hand-written materials. ‘Contextual definition’ is automatically produced in a prior
step.

EVALUATION

We evaluate the effectiveness of MetaBPL using three core metrics:

1. Fault Detection Rate: The percentage of faults correctly identified,
representing an intuitive classification accuracy for fault performance.

2. Fault Explanation Performance: A measure of how well the model
balances completeness and conciseness when explaining detected faults.
We compute TF-IDF-based cosine similarity and ROUGE (Lin 2004)
scores (ROUGE-1, ROUGE-2, and ROUGE-L) between the LLM-
generated explanation and the human-written ground truth. Cases where
the fault is not detected are not penalized.

3. Context/Location Retrieval Metrics: A measure of the accuracy and
conciseness of the retrieved context used for fault detection. Similar to
fault explanation performance, we assess this using TF-IDF-based cosine
similarity and ROUGE scores.

To evaluate MetaBPL, we construct a benchmark corpus of artificially
generated test cases with controlled fault injection. This synthetic internal
documentation includes structured documents such as Bill of Materials,
Quality Control (QC) Policies, Work Instructions, and Travelers. Documents
generated via our approach have an average of 330 words. Our pipeline
ensures consistency across these documents, while errors are manually
introduced based on an established fault taxonomy. This structured approach
enables a thorough analysis of fault detection performance.
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Table 1: Fault taxonomy including fault names and their descriptions.

Fault Description

Loss of Provenance Missing records of data usage, resource
allocation, or process history, preventing
traceability and auditing.

Ambiguous Reference to Object A resource is referenced inconsistently, causing
uncertainty about its correct usage.

Reference to Undefined Object A resource is mentioned but does not exist in
official records, making it unusable.

No Confirmation A process runs without verifying outcomes,
making errors undetectable and irreversible.

Missing Work Instructions A workflow step exists but lacks execution
details, leaving users without guidance.

No Termination A process cycles indefinitely due to invalid
transitions or unresolved conditions.

Incomplete Workflow A process lacks necessary steps or elements,
preventing successful completion.

Resource Leakage More resources are used than needed, causing
inefficiency and waste.

Unreferenced Object A resource exists in records but is never used in
any workflow step.

Unsatisfied Requirements A documented requirement is missing from the
final process or product.

Conflicting Requirements Two or more requirements contradict each other,
making them impossible to satisfy.

Incomplete Requirements Requirements lack necessary details, leading to
implementation gaps.

Inconsistent Work Instructions Instructions contain contradictions, creating
confusion in execution.

Duration Check Violation A time limit exists but is not enforced, allowing
tasks to exceed deadlines.

No Execution A process step exists but is never triggered or
used.

Resource Depletion Required resources run out before a task can be
completed.

Underconstrained Duration Task durations lack constraints, leading to
scheduling uncertainties.

Unused Object A resource is collected but never used in any
workflow step.

The benchmark consists of seven test cases, each covering a diverse
range of fault types. Across all test cases, there are 29 faults spanning
18 unique fault types, including deadlocks, one-way functions, unsatisfied
requirements, unused materials, and references to undefined materials. For
detailed descriptions of these fault types, see Table 1.

RESULTS

We provide an overall summary of the results (Table 2) from our automated
fault detection pipeline to demonstrate that MetaBPL can help improve the
accuracy and efficiency of fault detection in complex business environments.
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MetaBPL detects 44.8% of injected faults (13/29), demonstrating strong
fault detection. Fault explanations show partial alignment with human-
written ones (cosine similarity: 0.2457, ROUGE-1: 0.3525), indicating
moderate relevance. Fault location accuracy is higher (cosine similarity:
0.5133, ROUGE-1: 0.4718), effectively pinpointing faulty sections. However,
retrieved context quality is weaker (cosine similarity: 0.1701, ROUGE-1:
0.2434), highlighting the need for better supporting information selection.

Using LLaMa 3.2 8B (Dubey et al., 2024) on a remote AWS
server, our pipeline processes the benchmark dataset in under 2.5 hours,
averaging approximately 5 minutes per input document, i.e. organizational
documentation containing faults.

Our evaluation also reveals several false positives, though we did not
conduct a detailed error analysis. Our assessment focuses primarily on cases
where the model correctly detected the manually injected faults. However,
from a cursory review, most false positives appeared reasonable, likely due
to the nature of our benchmark. Since the dataset consists of artificially
generated organizational documentation rather than human-written text,
some flagged issues may still reflect plausible inconsistencies.

These findings suggest that while MetaBPL performs reasonably well in
fault localization, improvements in explanation clarity and context retrieval
could enhance its overall effectiveness while maintaining efficient processing
times.

Table 2: Evaluation results along our core metrics.

Fault Metrics Explanation Location Context

Total Faults: 29 Cos. Sim: 0.2457 Cos. Sim: 0.5133 Cos. Sim: 0.1701
Faults Found: 13 ROUGE-1: 0.3525 ROUGE-1: 0.4718 ROUGE-1: 0.2434
Found%: 44.8 ROUGE-2: 0.1601 ROUGE-2: 0.4156 ROUGE-2: 0.1367

ROUGE-L: 0.2549 ROUGE-L: 0.4521 ROUGE-L: 0.1917

CONCLUSION

MetaBPL represents a scalable, automated solution for detecting and
analyzing faults in business process logic systems. By leveraging an LLM-
powered RAG architecture, the framework enables proactive identification
of discrepancies, structured severity assessment, and intelligent corrective
recommendations. Our evaluation highlights its effectiveness in reducing
reliance on manual fault detection while ensuring greater precision and
operational resilience.

Additionally, the system demonstrates efficient processing times, analyzing
our benchmark dataset in under 2.5 hours (approximately 5 minutes
per fault) using LLaMa 3.2 8B (Dubey et al., 2024) on a remote AWS
server.

While MetaBPL performs well in fault localization, results indicate that
context retrieval and explanation clarity could be further improved to
enhance the overall accuracy of automated fault analysis. Future work will
focus on expanding fault taxonomies, refining self-reflection mechanisms,
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and integrating real-time monitoring capabilities to further strengthen
business logic security and improve interpretability.

Additional future work will extend MetaBPL into a neuro-symbolic fault
detection pipeline. Business Process Model Notation (BPMN)1, extended to
outline interactions between ERP and MES systems, provides a structured
language to model processes. We will leverage NLP techniques to extract
such models of processes from given documents. These models, with formal
specifications of properties that lead to faults, are fed to SMT Solvers and
BDD-based model checkers. This approach will integrate RAG-LLMs’ ability
to restructure data with symbolic methods that provide a high-assurance
approach to catching faults that decrease the risk of false positives or
negatives due to LLM hallucinations.
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