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ABSTRACT

The performance of complex products is directly related to their assembly quality, and
as a result, the precision requirements for assembling complex products are becoming
increasingly stringent. However, in the assembly process, precision deviations are
inevitable, often leading to situations where the required accuracy cannot be met. In
such cases, rework and adjustment methods are needed to modify certain geometric
attributes of the product model to ensure assembly precision. Currently, most rework
solutions rely on the personal experience of on-site workers and repeated disassembly
and reassembly, lacking scientific guidance. Aiming to improve the accuracy of
rework solutions, this paper proposes a rework model construction method tailored
for the process execution phase. First, an error propagation function is established
based on the Small Displacement Torsor (SDT) and homogeneous transformation
matrices. High-precision measurement equipment is then used on-site to collect
point cloud data of key features, which is processed to reconstruct the error model
of critical features, thereby enabling a more accurate error propagation model.
Subsequently, an optimization-based dynamic adjustment mechanism and an interval
resampling mechanism are introduced to improve the particle swarm optimization
(PSO) algorithm. Using the improved PSO algorithm, more accurate rework plans
are generated to guide on-site rework operations. Finally, a case study is conducted
using the rework process of a satellite product subassembly structure to validate the
proposed method. The results demonstrate that the proposed approach can generate
more reasonable and effective rework solutions, not only improving on-site rework
efficiency but also increasing the first-time assembly success rate of complex products.
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INTRODUCTION

The performance of complex products, such as satellites, aircraft, and
machine tools, is directly influenced by their assembly quality (2024).
Consequently, the precision requirements in the assembly process continue to
increase. With the rapid advancement of machining technology, the quality
of manufactured parts has significantly improved. However, the impact of
error factors in the assembly process on assembly quality has also become
increasingly significant (2018). Therefore, in the assembly process of complex
products, it is essential to strictly control the assembly accuracy of critical
nodes. This is especially true for single-piece and small-batch complex
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products like satellites, where there is often no room for selecting alternative
components. When the required assembly accuracy cannot be achieved,
rework solutions must be provided to guide on-site rework operations.

First, assembly accuracy analysis is key to controlling product assembly
quality and is a crucial factor in evaluating whether assembly quality meets
the required standards. Liu et al. (2018) used the Small Displacement
Torsor (SDT) to model key tolerances along the assembly path of helicopter
rotor system components. They then applied the homogeneous coordinate
transformation method for error propagation analysis, ultimately obtaining
the geometric rotational accuracy of the rotor system. Hu et al. (2024)
employed SDT and skin model shapes to construct a comprehensive tolerance
model for precision spindles. Zeng et al. (2024) built a coupling model of
assembly deviation and static mechanics to analyze the relationship between
assembly deviation and the mechanical characteristics of the bearing system.
Yi et al. (2024) proposed a digital twin-based assembly accuracy prediction
method for complex aerospace product assembly, utilizing virtual-physical
integration for assembly process modeling and analysis to enhance assembly
quality and performance stability.

On assembly sites, rework methods are typically used to adjust product
assembly accuracy, making feasible rework solutions necessary for guidance.
Sun (2022) addressed the weak correlation of stable knowledge in assembly
processes by proposing a knowledge graph-based representation method
for assembly processes. This method leverages the inferential capabilities
of knowledge graphs to dynamically adjust assembly processes. Guo
et al. (2023) established three single-objective optimization models for
machining cost, quality loss, and rework cost. They then constructed a
multi-objective tolerance optimization allocation model based on a weight
parameter distribution method for multi-objective models, solving it using
an accelerated particle swarm optimization algorithm to determine the error
values for each component loop. Chen et al. (2022) tackled the issue of
unpredictable rework volume for large aerospace structural components.
They employed fuzzy comprehensive evaluation to quantify factors such as
rework cost and difficulty, thereby recommending rework solutions.

Error Propagation Model Construction Method Based on Twin Data

In the field of assembly error modeling, the Small Displacement Torsor
(SDT) model is commonly used to describe the tolerance variations of typical
component features (2018). Additionally, homogeneous transformation
matrices from rigid body kinematics in robotics are utilized to construct
error propagation models (2023). The error propagation model of
complex products serves as the foundation for generating rework solutions.
Traditional error propagation models rely on the analysis and calculation
based on the design data of complex products, which cannot promptly reflect
the actual geometric variations of products in the assembly environment.
Therefore, it is necessary to collect point cloud data using high-precision
measurement equipment at the assembly site after completing critical
assembly steps. This enables the reverse reconstruction of key features. The
specific implementation steps are shown in Figure 1.
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Figure 1: The process of key feature reconstruction.

After completing the actual assembly of critical assembly steps, high-
precision measurement equipment at the assembly site is used to obtain
the measured geometric feature data. Once the raw point cloud data is
collected, preprocessing techniques such as denoising, hole filling, and data
downsampling are applied to improve the accuracy of subsequent point cloud
registration and enhance analytical efficiency.

Point cloud registration is the core step for aligning the measured data
with the design model. Its objective is to eliminate pose deviations between
the two through geometric transformations, enabling the precise extraction
of assembly errors. Based on the preprocessed point cloud, the reconstruction
of key assembly features is achieved through three main steps: coarse
registration, fine registration, and error torsor extraction.

Coarse registration aims to rapidly estimate the initial transformation
matrix between the measured point cloud and the design model by extracting
prominent geometric features, thereby providing a good initial pose for
subsequent fine registration. Its core process includes feature description,
correspondence matching, and transformation matrix computation.

First, the Fast Point Feature Histogram (FPFH) descriptor is used to
characterize the local geometric features of the point cloud. FPFH is highly
robust to noise and variations in point cloud density, making it suitable
for representing complex geometric features. By statistically analyzing
the geometric property distribution within a point’s neighborhood, FPFH
generates a highly discriminative 33-dimensional feature vector. For a given
point pi, the computation of its FPFH features consists of three main steps:
neighborhood construction, geometric property calculation, and histogram
statistics.

Step 1: Neighborhood Construction
Centering on point pi, a spherical neighborhood with a radius of

r = 5mm is constructed, containing neighboring k = 50 points.
Step 2: Geometric Property Calculation
Step 2.1: Calculation of the Normal Vector Angle
The angle between the normal vectors of point pair

(
pi,pj

)
is computed as:

α = arccos(−→ni ·
−→nj )

where −→ni and
−→nj are the normal vectors of points pi and pj, respectively.
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Step 2.2: Calculation of Local Curvature
The local curvature is computed as:

∅ = λ1/(λ1 + λ2 + λ3)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the covariance matrix of the
neighborhood.

Step 3: Histogram Statistics
The parameters α and ∅ are discretized into a 33-dimensional histogram,

generating the feature vector fi∈R33.
Next, the Random Sample Consensus (RANSAC) algorithm is applied

to filter out the optimal correspondence point set and estimate the
initial transformation matrix H0H_0. RANSAC enhances iterative random
sampling and model verification by randomly selecting three non-collinear
point pairs from the matched point set to construct a minimal sample set and
compute the rigid transformation matrix. The specific process is as follows:

Step 1: Random Sampling
Randomly select three non-collinear point pairs from the matched point

set to form a minimal sample set (Minimal Set).
Step 2: Model Hypothesis
Based on the minimal sample set, compute the candidate rigid

transformation matrix Hcandidate, which includes the rotation matrix R and
the translation vector −→t .

Step 3: Inlier Selection
Set a distance threshold dmax = 0.1mm and count the number of inliers

that satisfy: ∥∥∥pmeasi −Hcandidate · p
design
i

∥∥∥ ≤ dmax

Step 4: Iterative Optimization
Repeat the above process N = 1000 times, and select the transformation

matrix Hcandidate with the highest inlier ratio as the initial transformation
matrix H0. The mathematical expression is:

H0 = argmax
H

(
Internal points
Total points

)
(1)

The physical significance of the initial transformation matrixH0 is to map
the designmodel from the ideal coordinate system to themeasured coordinate
system. Its mathematical form is given by:

H0 =

[
R0 t0
0T 1

]
(2)

In the equation, R0 ∈ SO (3) represents the rotation matrix, and t0 ∈
R3 represents the translation vector. After coarse registration, the average
alignment error between the measured point cloud and the design model is
typically reduced to within 1 mm.
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The accuracy of coarse registration is insufficient to support the precision
prediction of high-precision complex products. Therefore, fine registration
is required to achieve higher accuracy in point cloud alignment. Fine
registration is performed using the Iterative Closest Point (ICP) algorithm,
which further optimizes the transformation matrix and enables sub-
millimeter-level point cloud alignment. The ICP algorithm is one of the most
widely used fine registration methods in point cloud processing. Its objective
is to iteratively optimize the alignment by minimizing the distance error
between corresponding points in the two point clouds, ultimately achieving
high-precision alignment.

First, a three-dimensional KD-tree (K-Dimensional Tree) data structure
is constructed for the design model point cloud Pdesign, reducing the
time complexity of nearest neighbor search from O

(
N2) to O

(
N logN

)
.

A bidirectional consistency check is then performed to ensure the accuracy of
the corresponding point pairs.Next, the Singular Value Decomposition (SVD)
method is used to solve for the optimal transformation matrix. For the k-th
iteration, given N pairs of corresponding points, the optimal transformation
matrix is obtained by minimizing the objective function. After decentralizing
the coordinates, the covariance matrix is computed and decomposed using
SVD to derive the optimal rotation matrix and translation vector. The specific
steps are as follows:

Step 1: Nearest Point Search
Utilizing a KD-tree for accelerated searching, each point psourcei in the

source point cloud is matched with its nearest corresponding point ptargeti
in the target point cloud based on geometric distance.

Step 2: Transformation Matrix Estimation
Based on the corresponding point pairs, the optimal rigid transformation

T = (R, t) is solved using the least squares method. The specific steps are as
follows:

Step 2.1: Compute the Centroids of the Source and Target Point Clouds

µsource =
1
N

N∑
i=1

psourcei (3)

µtarget =
1
N

N∑
i=1

ptargeti (4)

Step 2.2: Covariance Matrix Construction

C =
N∑
i=1

(
psourcei − µsource

) (
ptargeti − µtarget

)T
(5)

Step 2.3: SVD Decomposition
Perform Singular Value Decomposition (SVD) on the covariance matrix C

C = U
∑

VT (6)
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The optimal rotation matrix and translation vector are given by:

R = VUT (7)

t = µtarget − Rµsource (8)

Step 3: Convergence Criteria and Termination
The ICP algorithm iteratively adjusts the transformation matrix until

the registration error is minimized or the predefined maximum number of
iterations is reached. A common convergence criterion is that the change in
registration error falls below a certain threshold. Specifically, the iteration
terminates when the change in Root Mean Square Error (RMSE) between
two consecutive iterations is smaller than the threshold. The residual error at
the k-th iteration is denoted as ε(k):

ε(k) =

√√√√ 1
N

N∑
i=1

∥∥∥R(k)psourcei + t(k) − ptargetj

∥∥∥2 (9)

Additionally, a maximum iteration count kmax can be set to prevent the
algorithm from getting stuck in an infinite loop.

By following the above steps, the ICP algorithm continuously optimizes
registration accuracy until it converges to the optimal solution, thereby
achieving precise alignment between point clouds.

After fine registration, the transformation matrix needs to be decomposed
into rotation and translation components to construct a SDT model for
quantifying assembly errors. The rotation matrix can be converted into a
rotation vector using the matrix logarithm mapping. The rotation vector and
translation vector are then combined into an error torsor, which intuitively
represents deviations in six degrees of freedom (three translations and three
rotations), providing a mathematical basis for subsequent tolerance analysis.

Following the above process, the optimal transformation matrix Hmeas
obtained from point cloud registration using the ICP algorithm is:

Hmeas =

[
Rmeas tmeas
0T 1

]
(10)

Rotation vector extraction: The rotation matrix is converted into a
rotation vector θmeas using the matrix logarithm mapping:

θmeas = log (Rmeas) (11)

The specific calculation process is as follows:

θ = arccos
(
tr(R)− 1

2

)
(12)

Eu =
1

2 sin θ

 R32 − R23
R13 − R31
R21 − R12

 (13)

θmeas = θ Eu (14)

where −→u is the unit vector of the rotation axis, and θ is the rotation angle.
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Translation Vector Extraction: The translation component is directly
obtained as tmeas.

Summary, The error torsor model Terror is given by:

Terror =
[
θmeas
tmeas

]
(15)

By applying the above methods, the reverse reconstruction of key features
can be achieved, allowing the correction of the model using measured data.
This process helps in constructing a more accurate error propagation model,
thereby laying a stronger foundation for the generation of subsequent rework
solutions.

A Rework Solution Generation Method Based on an Improved
Particle Swarm Optimization Algorithm

In the assembly process of complex products, when the assembly accuracy
does not meet the inspection requirements, it is necessary to rework certain
structural features of components. However, the current rework approach
primarily relies on the experience of on-site workers, using repeated trial
assembly, measurement, and adjustment methods. Since the rework range
is often estimated roughly, the entire process involves significant uncertainty,
making it difficult to ensure rework quality while balancing cost control and
operational efficiency.

Since its introduction, the particle swarm optimization (PSO) algorithm
has been widely applied in various fields and has become an essential tool
for solving complex optimization problems. With further research, many
improved PSO algorithms (such as hybrid PSO and modified PSO) have
been proposed, expanding its adaptability and optimization effectiveness in
practical applications.

In the field of assembly, the application of PSO for generating rework
solutions still faces the following challenges:

1. In the assembly process, there are usually multiple constraints, such as
assembly sequence, spatial limitations, and types of geometric tolerances.
Since these constraints are often nonlinear and non-convex, the solution
space is typically highly complex and contains multiple local extrema,
making it easy for PSO to fall into a local optimal solution, resulting in
poor optimization results.

2. The optimization results of the PSO algorithm are specific numerical
values rather than feasible rework intervals, which does not meet the
practical requirements of rework.

Therefore, to better apply the method for generating rework solutions, this
paper proposes a rework solution generation strategy based on an improved
particle swarm optimization (IPSO) algorithm, as shown in Figure 2, which
mainly adds the following mechanisms:

1. Optimization Dynamic Adjustment Mechanism (ODAM): This
introduces random weights and asynchronous learning factors, allowing
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the particles’ velocities to be dynamically adjusted during iterations,
thus avoiding the algorithm from falling into local optimal solutions.

2. Repair Interval Upsampling Mechanism (RIUM): In this paper, the
optimization targets for IPSO particles are the geometric tolerances
along the error propagation path. Based on the characteristics of the
error propagation model, the relationship between geometric tolerances
and assembly accuracy of the target features is linear. Therefore, the
repair interval upsampling mechanism is introduced to record feasible
solutions that meet inspection requirements, generating multiple sets of
feasible rework solutions. The upsampling method, inspired by signal
processing, forms the repair interval upsampling mechanism to create
feasible rework intervals.

(1) Optimization Dynamic Adjustment Mechanism
Therefore, this paper introduces random weights and asynchronous

learning factors to enhance the optimization capability of the algorithm.
The iterative update equations for the velocity and position in the improved
particle swarm optimization (IPSO) algorithm are given as follows:

vi(t + 1) = ω · vi(t)+ c1 · r1
(
pbesti − xi(t)

)
+ c2 · r2

(
gbesti − xi(t)

)
(16)

xi(t + 1) = xi(t)+ vi(t + 1) (17)

Where: vi (t) represents the velocity of the i-th particle at iteration t, xi (t)
represents the position of the i-th particle at iteration t, ω is the random
relationship weight, c1 and c2 are asynchronous learning factors, r1 and r2
are random factors, typically generated within the range [0,1], pbesti is the
historical best position of particle i, gbesti is the global best position.

The random weight is defined as:

ω = µmin + rand()× (µmax − µmin)+ σ × randn() (18)

where: µmin and µmax are the minimum and maximum values of the random
inertia weight, respectively, rand() is a uniformly distributed random number
in the range [0, 1], randn()is a normally distributed random number with a
mean of 0 and a standard deviation of 1, σ is the standard deviation, which
controls the magnitude of the random fluctuation.

The asynchronous learning factors are defined as:

c1 = (c1e − c1s) (t − tmax)/tmax + c1e (19)

c2 = (c2e − c2s) (tmax − t)/tmax + c2e (20)

where: c1s and c2s are the starting values of the learning factors c1 and c2,with
c1s = c2s = 2.5, c1e and c2e are the ending values of the learning factors c1
and c2, ensuring that c1 and c2 change asynchronously.
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(2) Repair Interval Upsampling Mechanism (RIUM)
To enhance the exploration capability of feasible solution spaces for

geometric tolerances in complex assembly systems, this paper proposes a
repair interval upsampling mechanism (RIUM). The core idea is to integrate
the particle swarm optimization algorithmwith the upsampling concept from
the signal processing domain, expanding the feasible solution set through
interpolation and generating multiple rework intervals.

First, during the iterative process of the improved PSO algorithm, feasible
solutions that satisfy the constraint conditions in each dimension are recorded
to construct an initial feasible solution set F = {x1,x2, · · · xn}, where xi
represents a feasible solution in a specific dimension, and N is the total
number of feasible solutions.

Based on this set, considering that the distribution of feasible solutions in
the solution space exhibits non-uniform characteristics, a Gaussian Process
Interpolation (GPI) method is adopted to balance local precision and global
adaptability.

Subsequently, the feasible solution set undergoes interpolation to generate
candidate solutions. Specifically, for two adjacent feasible solutions xi and
xj, an intermediate solution xij is generated using an interpolation coefficient
(0 < α < 1). The expression is given by:

xij = xi + α
(
xj − xi

)
(21)

By repeating this operation, an upsampled candidate solution set Fupsampled
is formed. Candidate solutions that do not meet the constraint conditions are
then eliminated to ensure the feasibility of the solutions.

Furthermore, statistical analysis is conducted to determine the range of
the rework interval. The mean µ and standard deviation σ of the candidate
solution set are calculated as follows:

µ =
1
M

M∑
k=1

xk (22)

σ =

√√√√ 1
M

M∑
k=1

(
xk − µ

)2 (23)

where M is the number of candidate solutions. Based on this, the rework
interval can be defined as:

Tinterval = [µ− k · σ ,µ+ k · σ ] (24)

In the equation, the expansion coefficient kk is used to adjust the interval
width. Finally, the repair interval Tinterval is divided into multiple sub-
intervals, with each sub-interval corresponding to a set of feasible rework
solutions. This process forms a high-density feasible region within the
solution space.This mechanism dynamically expands the solution space,
effectively enhancing the diversity and robustness of rework solutions.
It provides a more comprehensive optimization foundation for complex
assembly scenarios.
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When the assembly accuracy of critical assembly steps in the complex
product assembly process does not meet the required standards, the improved
particle swarm optimization algorithm can enhance the efficiency of particle
optimization and prevent it from getting trapped in local optima. This
enables the generation of more efficient and precise rework solutions.The
dimensions of the particle swarm represent the number of rework regions,
and particles perform optimization iterations within the solution space. Each
particle corresponds to a generated rework solution. After each iteration, the
results are substituted into the assembly accuracy analysis model to obtain
the corresponding assembly accuracy, which serves as the function fitness.The
rework solution generation method based on IPSO, as shown in Figure 2,
yields feasible rework solutions.

Figure 2: Method for generating repair plans based on IPSO.

CASE STUDY

To validate the effectiveness of the proposed rework solution generation
method for the process execution phase, a case study is conducted using
the assembly process of a satellite product subassembly structure. This
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subassembly structure consists of multiple assembly steps, including the base
plate, vertical plates, intermediate partitions, side panels, and top plate,
involving 15 error terms in the error propagation paths.

By performing reverse reconstruction of key features and generating
rework solutions, the accuracy of the proposed method is verified.

Figure 3: Transmission path of structural errors in a certain satellite component.

Table 1: Structural error term and number of a certain satellite.

Geometric Features Error Term Error Number

Surface on the base plate δZ1 (X) , εX1(X), εY1(X) 1, 2, 3
Surface on the portrait δZ2 (X) , εX2(X), εY2(X) 4, 5, 6
Surface on the middle partition δZ3 (X) , εX3(X), εY3(X) 7, 8, 9
Surface on the side plate δZ4 (X) , εX4(X), εY4(X) 10, 11, 12
Surface on the apical plate δZ5 (X) , εX5(X), εY5(X) 13, 14, 15

Taking the satellite product subassembly structure shown in Figure 3 as
an example, high-precision measurement equipment (laser tracker) is used
to collect actual assembly data. The error term values range from ±50 µm
(positional error) to ±0.001 rad (angular error).
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Using the base plate mounting surface as a case study, its geometric
features are reconstructed from high-precision point cloud data, and the error
torsor model is extracted. A 3D scan of the base plate mounting surface is
performed, capturing approximately 60,000 raw point cloud data points with
a point spacing of 0.1 mm and a scanning accuracy of ±0.02 mm.

The point cloud data is then preprocessed, reducing the number of points
to 40,000, achieving a retention rate of approximately 67%. A subset of the
measured point coordinate data is shown in Figure 4.

Figure 4: Actual measurement data of the base plate installation surface (partial).

Based on the RANSAC algorithm, three sets of non-collinear points are
randomly sampled. The inlier threshold is set as dmax = 0.1mm. After 1000
iterations, the initial transformation matrix H0 is obtained:

H0 =


0.9998 0.0053 −0.0172 0.12
−0.0051 0.9999 0.0086 −0.09
0.0173 −0.0085 0.9998 0.05

0 0 0 1

 (25)

Then, based on the ICP algorithm, fine registration is performed. After
15 iterations, the final transformation matrix Hmeas is obtained:

Hmeas =


0.9999 0.002 −0.003 0.01
−0.002 0.9998 0.001 −0.02
0.003 −0.001 0.9999 0.05
0 0 0 1

 (26)
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Based on the final transformation matrix Hmeas, the error torsor is
extracted. Using equations (11) to (14), the calculated rotation angle is:

θX = arcsin (R32) = arcsin(−0.001) ≈ −0.001rad (27)

θY = arcsin (R13) = arcsin(−0.003) ≈ −0.003rad (28)

The translation vector can be directly obtained as:

tZ = −0.05 mm (29)

Therefore, the error torsor model Terror for the reconstructed base plate
mounting surface feature based on point cloud data is given by:

Terror =

 tZ
θX
θY

 =
 0.005
−0.001
−0.003

 (30)

Using Creo software, a sensitivity analysis of the model is conducted,
revealing that the upper surface of the intermediate partition has high
sensitivity. Therefore, rework simulation is performed specifically for this
surface.

The particle swarm is configured with a population size of 50 and a
maximum of 200 iterations. The learning factor c1 decreases linearly from
2.5 to 1.0, while c2 increases from 1.0 to 2.5. The inertia weight ω is set
within the range [0.4, 0.9].

During the particle swarm iteration process, feasible solutions
satisfying the constraints are recorded as F = {−0.07,−0.08,−0.09}.
Using equation (21) for interpolation between adjacent solutions
with α = 0.05, intermediate solutions are generated as
x12 = −0.075,x23 = −0.085, expanding the candidate solution set
to {−0.07,−0.075,−0.08,−0.085,−0.09}. Substituting these values into
the error propagation function confirms that they all meet the accuracy
requirements.

Then, using equations (22) and (23), the mean is calculated as µ = −0.08
and the standard deviation as σ = 0.007. Applying equation (24), the
feasible rework interval is:

Tinterval = [µ− 1.5σ ,µ + 1.5σ ] = [−0.0905,−0.0695]

In conclusion, when the top plate assembly accuracy does not meet
the requirements, the interference error in the Z direction can be
eliminated by filing the embedded parts on the contact surface between the
intermediate partition and the vertical plate. The feasible rework range is
[−0.0905,−0.0695]mm.

Implementing the rework process based on the proposed method
significantly improves the feasibility and efficiency of the rework solution,
providing scientific guidance for the rework of complex products.
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CONCLUSION

This paper addresses the issue of generating rework schemes in the complex
product assembly process and proposes a rework model construction method
oriented toward the process execution end. High-precision measurement
equipment is used to obtain point cloud data of target features, enabling
reverse reconstruction of these features based on the point cloud data. This
approach facilitates the construction of a more accurate error propagation
model. Additionally, an Optimization Dynamic Adjustment Mechanism
(ODAM) and a Repair Interval Upsampling Mechanism (RIUM) are
introduced to enhance the particle swarm optimization (PSO) algorithm.
Based on the improved PSO algorithm, feasible rework intervals are
generated. Case studies validate that this method effectively improves the
first-pass assembly success rate and rework efficiency for complex products.

Future research can further optimize the algorithm for generating rework
schemes by incorporating additional practical assembly constraints and
verifying the model with more real-world cases to enhance its accuracy and
applicability. Furthermore, with the continuous advancement of digital twin
technology, the real-time performance and intelligence level of the rework
model will be further improved, providing more reliable assurance for the
assembly quality of complex products.
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