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ABSTRACT

Accident investigation is fundamental to aviation safety, serving to identify causal factors and prevent the

recurrence of accidents. Traditionally, such investigations have depended on systematic methodologies like

the SHELL model and Fault Tree Analysis, drawing on data from flight data recorders, cockpit voice recorders,

and eyewitness accounts. However, the rapid integration of digital technologies, the increasing complexity

of modern systems, and the challenges posed by globalized operations have created an urgent need for more

sophisticated investigative tools. Artificial intelligence offers capabilities such as pattern recognition, predictive

modeling, and real-time data analysis, which can significantly augment the investigative process and improve

outcomes. This research explores the application of AI in aviation accident investigations with a specific focus

on several areas. First, the literature review examines the use of AI for human error analysis, investigating

behavioral patterns, decision-making processes, and cognitive workload during incidents. It also evaluates the

potential of AI tools to assess system reliability by detecting latent failures and interdependencies in avionics

and mechanical systems. Furthermore, the research considers how AI-driven applications - simulations can be

used for resilience modeling by reconstructing accidents and assessing system responses to cascading failures.

In addition, the study evaluates how AI can enhance investigative efficiency through the automation of data

sorting, analysis, and hypothesis testing. A multi-disciplinary approach was employed, integrating theoretical

frameworks with AI-driven simulations and case study analyses. The methodology began with an extensive

literature review of existing accident investigation methodologies, emphasizing the role of technology and data

analytics. Building on this review, an AI-powered investigative framework was developed that incorporates

machine learning algorithms for anomaly detection, natural language processing for analyzing cockpit

communications and maintenance logs, and predictive analytics for modeling potential accident scenarios

based on historical data. The framework was then tested through the “Aviation Human Factors Analyst” Open

AI application simulations that replicated past aviation accidents to validate its ability to identify causal factors

and suggest preventive measures. Finally, the framework was applied to real-world aviation accidents, such

as controlled flight into terrain and loss of control in flight, to assess its effectiveness in uncovering human,

technical, and environmental contributors. By augmenting traditional methodologies with advanced AI-driven

tools, investigators can achieve greater accuracy and efficiency in uncovering causal factors, ultimately

enhancing overall aviation safety. Future research should address cybersecurity considerations to protect AI

systems from cyber threats, explore the transferability of AI frameworks to other transportation sectors such

as rail and maritime, develop AI tools capable of real-time incident analysis to support immediate corrective

actions, and advance methods in explainable AI to ensure transparency and accountability in AI-driven findings.

Integrating AI into aviation accident investigations promises a more resilient and adaptive safety ecosystem,

paving the way for safer skies.

Keywords: Aviation safety, Artificial intelligence (AI), Accident investigation, Human error,
Reliability, Resilience, Performance

© 2025. Published by AHFE Open Access. All rights reserved. 107

https://doi.org/10.54941/ahfe1006499


108 Sanchez et al.

INTRODUCTION

In the aviation industry, accident investigations have long relied on systematic
methodologies such as the SHELL model and Fault Tree Analysis (Reason,
1997). These traditional Safety I approaches focus on retrospectively
identifying errors and failures by analyzing data from flight data recorders,
cockpit voice recorders, and eyewitness testimonies (ICAO, 2020). Such
methods have proven effective in isolating causal factors in many incidents.
However, as modern aviation systems become increasingly complex—with
digital technologies generating vast amounts of diverse data and intricate
interdependencies emerging among technical components, human operators,
and environmental conditions—the limitations of conventional approaches
become more pronounced, merging safety paradigms distinguished between
Safety I and Safety II approaches. While Safety I concerns itself with reducing
adverse outcomes by scrutinizing past failures, Safety II shifts the focus
toward understanding how systems succeed under varying conditions and
enhancing their resilience (Hollnagel, 2017). This newer perspective does not
simply seek to eliminate errors; it also strives to foster the system’s capacity
to adapt and continue functioning effectively even when deviations occur.

In aircraft accident investigations, integrating Safety II concepts involves
understanding the conditions that enable successful operations, providing
essential insights for preventing future mishaps. Recent advances in artificial
intelligence (AI) present promising opportunities to bridge the gap between
these two safety paradigms. AI systems can process vast amounts of data
in real-time, identify subtle patterns that may escape human analysis, and
simulate various operational scenarios. By incorporating machine learning
algorithms, natural language processing, and advanced predictive analytics,
an AI-powered investigative framework can enhance both the error-focused
analysis typical of Safety I and the resilience-oriented insights emphasized
by Safety II. For instance, AI-driven simulations can reconstruct accident
sequences with high fidelity, uncovering not only the immediate failures
but also the underlying conditions that allowed the system to operate
successfully most of the time. This dual perspective—leveraging the strengths
of both Safety I and Safety II—can ultimately lead to more proactive safety
interventions and a more resilient aviation system ecosystem.

In summary, the aviation industry can achieve a more comprehensive
understanding of accident causation by augmenting traditional investigation
methods with AI-based tools that incorporate the principles of both Safety I
and Safety II. This integrated approach not only improves the detection of
latent failures and human errors but also supports the design of safety barriers
using technological, regulatory, and training tools capable of adapting to the
challenges of modern aviation.

LITERATURE REVIEW

In aviation, AI applications are not confined to operational optimization;
they extend into critical safety domains such as predictive maintenance,
air traffic management, and crew training (EASA, 2023). During aviation
accident investigations, AI applications are not limited to operational
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optimization; they also encompass critical safety areas such as predictive
maintenance, air traffic management, and crew training (EASA, 2023).While
investigating aviation accidents, AI facilitates comprehensive analyses of
data from Flight Data Recorders (FDR), Cockpit Voice Recorders (CVR),
maintenance logs, and operational records. These advanced analytical
capabilities allow investigators to identify patterns and anomalies that may
go undetected by traditional investigative methods (Strauch et al., 2023).

In predictive maintenance, AI models forecast potential equipment
failures before they occur, thereby significantly reducing the likelihood of
accidents stemming from mechanical issues. In air traffic management, AI
enhances traffic flow efficiency, mitigates congestion, and improves safety
by predicting potential conflicts (Abdillah, 2024). Furthermore, in flight
operations monitoring, AI continuously evaluates flight data to identify
irregularities that could signal emerging safety risks, thus enabling proactive
interventions (Malakis et al., 2023).

Integrating AI into aviation safety practices aligns with the evolving
paradigms of Safety I and Safety II. Safety I, which has traditionally focused
on preventing failures and minimizing the likelihood of adverse outcomes,
benefits from AI’s ability to analyze historical data and identify risk factors
associated with past incidents. AI systems can process vast amounts of
flight data, maintenance records, and incident reports to detect patterns
that may indicate underlying safety issues, thus supporting a reactive safety
management approach (Demir et al., 2024).

Conversely, Safety II represents a shift toward a more proactive and
resilient approach to safety management (Cooper, 2020). This paradigm
emphasizes understanding how everyday operations succeed and how
systems adapt to different conditions to maintain safety (Cutchen, 2020).
AI plays a crucial role in this context by enabling real-time monitoring and
predictive analytics. Through continuous data analysis, AI can identify what
went wrong in previous events and what contributes to successful operations.
This dual capability allows for a more comprehensive understanding of
system performance and the factors that promote safety.

The current state of AI in aviation is characterized by its expanding role
in supporting both traditional and modern safety management practices. As
AI technologies evolve, their integration into aviation safety frameworks will
likely become more sophisticated, enabling more effective risk assessment,
decision-making, and continuous improvement in safety performance.

METHODOLOGY

The research methodology underpinning this study is guided by Saunders’
Research Onion framework, which offers a comprehensive structure for
research design (Saunders et al., 2019). This framework encompasses several
layers, including research philosophy, approach, strategy, methodological
choices, time horizon, and data collection techniques.

• Research Approach: This research used a deductive approach, with the
testing of existing theories and models on AI and aviation safety against
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empirical data to ensure that the investigation into the effectiveness of AI
in enhancing aviation accident investigations is structured.

• Research Strategy: The thematic analysis/case study strategy used in
this research focuses on detailed analyses of specific aviation accidents
in which AI could have influenced the investigation outcomes. This
research identified patterns, challenges, and opportunities that come with
implementing AI by looking at real incidents. This approach provides an
opportunity for deep understanding of contextual factors that influence
the integration of AI in aviation safety processes.

• Methodological Choices: A mixed-method approach is adopted,
combining both quantitative and qualitative data to provide a
comprehensive analysis. Quantitative data includes statistical
information from aviation safety databases, such as incident frequencies,
failure rates, and performance metrics of AI systems. Qualitative data is
gathered through case studies, expert interviews, and content analysis
of accident investigation reports. This dual approach ensures a holistic
understanding of AI’s impact on aviation safety (Aviation Human Factors
Analyst Open AI application Case Study).

• Time Horizon: The study employs a cross-sectional time horizon,
capturing data from a specific period to analyze current trends and
practices in AI applications within aviation accident investigations. This
time-bound approach allows for the assessment of contemporary AI
technologies and their immediate effects on aviation safety.

• Data Collection Techniques: Data for this research is sourced from
multiple channels, including aviation safety databases (e.g., ICAO,
NTSB reports), peer-reviewed journals, industry white papers, and
official accident investigation reports. Quantitative data is analyzed using
statistical tools to identify correlations and trends, while qualitative data
is examined through thematic analysis to extract meaningful insights.

• Data Analysis Techniques: Advanced statistical analyses, such as
regression analysis and hypothesis testing, are employed to interpret
quantitative data. AI modeling techniques use machine learning
algorithms in data analytics to discover patterns and predict future
trends. For qualitative data analysis, coding and thematic analysis were
conducted, enabling the identification of recurring themes and insights
about the role of AI in aviation accident investigations.

• Thematic analysis was conducted through a systematic review; the
search of relevant material focused on peer-reviewed journals within
the last five years. A total of 25 scholarly articles were identified and
filtered down by relevance to AI in aviation accident investigation,
regulatory frameworks such as FAA, EASA, ISASI, ICAO Annex 13, and
safety management paradigms like Safety-I and Safety-II. (FAA, EASA,
ISASI, ICAO Annex 13), and safety management paradigms (Safety-I and
Safety-II).

The following filters were applied:

• Publication Date: 2019–2024;
• Source Type: Peer-reviewed journals and academic publications;
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• Focus: Aviation safety, AI applications, accident investigations, human
factors;

• Databases: Scopus, Web of Science, IEEE Xplore, ScienceDirect.

The research implemented the following coding framework:
Code 1: Accident Analysis (identifying causal factors using AI);
Code 2: Investigation Processes (enhancement through AI tools);
Code 3: AI Applications (machine learning, NLP, predictive analytics);
Code 4: Safety-I (focus on failure prevention and risk mitigation);
Code 5: Safety-II (system resilience, proactive safety management).
This methodological framework aims to explore the multifaceted role of

AI in aviation accident investigations, providing robust and reliable findings
that contribute to the field of aviation safety.

RESEARCH

Identifying causal and contributing factors in aviation accident investigations
offers an opportunity for improvement through AI applications. Harris and
Li (2019) developed an AI model to assist in analyzing accident causes.
The researchers trained a neural network using the accident reports of
523 military aviation incidents to identify the preconditions for human
error (HFACS Level 2 to Level 1). Another exploratory study examined
the use of large language models (LLMs) with HFACS as a framework
(Saunders et al., 2024). The authors noted challenges faced by LLMs
while analyzing pilots’ cognitive processes, such as violations and decision-
making (Saunders et al., 2024). Xu et al. (2024) utilized knowledge
graphs to clarify patterns and relationships in accident causation. After
analyzing 473 aviation accidents from 2018 to 2022, the authors discovered
that graph analytics can help identify hidden risk patterns in aviation
operations.

For process improvement during Aviation Accident investigations. AI’s
ability to process and analyze large volumes of data is particularly valuable
in accident investigations. Traditional methods rely heavily on manual
data review, which can be time-consuming and prone to human error. AI
algorithms can quickly sift through flight data recorder (FDR) and cockpit
voice recorder (CVR) information, identifying anomalies and patterns that
may indicate causal factors (Strauch et al., 2017). Ray et al. (2023) studied the
benefits of using AI to summarize and analyze aviation incident reports. The
authors examined using Generative Pre-trained Transformer (GPT) model to
generate incident synopsis from the incident’s narratives from investigators.
Kurian et al. (2020) developed an AI incident analysis model that classifies
events by type and severity. The researchers combined machine learning with
an incident database of 15,000, finding 75 to 90% accuracy to determine
probable causes.

Predictive analytics is another critical area where AI has made significant
contributions. AI can predict potential safety risks by analyzing past
incidents and accident data while suggesting preventive measures. This
proactive approach aligns with the Safety-II framework, which emphasizes
understanding how systems succeed under varying conditions and focuses
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on enhancing resilience rather than solely preventing failures (Hollnagel,
2017). Zeng et al. (2022) applied the Least Absolute Shrinkage and Selection
Operator (LASSO) and Long Short-Term Memory (LSTM) to analyze
138 aviation safety events. The authors found that predictive analytics
models could be useful in identifying aviation safety predictors. Machine
learning models can analyze historical accident data to uncover trends and
correlations that might not be apparent through traditional analysis. These
insights assist investigators in understanding the sequence of events leading to
an accident and identifying contributing factors, such as mechanical failures,
human errors, or environmental factors conditions.

Safety professionals use the concept of Safety as the lack of incidents
and accidents (Aven, 2021). However, the absence of accidents or incidents
does not describe a safety system. Therefore, a more appropriate definition
incorporates the concept of freedom of unacceptable risks (Bieder, 2023).
Consequently, safety can be regarded as the cumulative outcome of the
choices and behaviors of all individuals capable of engaging with the
operating system (Aven, 2021). In the literature, Safety-I is described as the
traditional approach to safety that focuses on preventing negative outcomes
(Hollnagel, 2018). In practice, this means organizations focus on reactive
measures: investigating incidents for root causes, counting and reducing error
rates, and ensuring compliance with procedures (Hollnagel, 2018). Safety-I
aims to achieve a centralized approach to safety where the organization and
people are aligned on the definitions of what is safe (Provan et al., 2019). The
limitations of Safety-I in complex socio-technical systems were explored by
Ham (2021). The author explained that the reactive nature of Safety-I and
the assumption of bi-modal outcomes fail to recognize and prevent safety
events in complex industries. Similarly, Safety-I does not understand success,
focusing only on failures. By concentrating solely on failures, Safety-I may
not fully explain why the same system that usually works occasionally breaks
(Hollnagel, 2018).

Safety-II then emerges as a contemporary shift in paradigms that
complements Safety-I. Going further from focusing on failures, Safety-II
focuses on the ability of the system to overcome safety challenges under
varying or complex conditions (Shimizu&Nishigori, 2020). Safety-II may be
described as a resilient risk control model that diverges from reactive analytic
procedures to proactive adaptive and co-adaptive models & measurements
to predict and identify process disruptions and variability (Cooper, 2020).
Safety-II enhances system resilience by emphasizing the “presence of safety
rather than the absence of safety” (McCarthy et al., 2020, p. 369). The
Safety-II approach to safety aims to provide guided flexibility, allowing the
people and organization to overcome unexpected events (Provan et al., 2019).
Safety-II complements Safety-I by learning from the conditions where the
system is able to manage unexpected events and regain safety (Cutchen,
2020). Aviation safety has evolved from reactive to proactive and predictive
to meet the requirement for intelligent and refined safety management (Zeng
et al., 2022).

Artificial intelligence (AI) is revolutionizing the methodology of accident
analysis investigations to continue advancing aviation safety. AI-driven risk
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assessment tools are capable of simulating different accident scenarios,
enabling investigators to explore various hypotheses and identify the
most likely causes. These simulations provide a deeper understanding
of complex interactions between human, technical, and environmental
factors. The case study presented in the Findings section of the Aviation
Human Factors Analyst Open AI application (https://chatgpt.com/g/g-
67681ccba4908191bd5e8f932258cf4c-aviation-safety-analyst) provides an
overview of the implementation of the literature review findings of AI
capabilities in-flight safety—incident/accident investigations.

FINDINGS

The “Aviation Safety Analyst” is an innovative experimental custom GPT
designed to revolutionize aviation safety and accident investigation. This
sophisticated AI-driven tool is tailored to support aviation professionals,
researchers, and investigators by offering comprehensive analytical
capabilities for various established accident analysis frameworks. Currently,
it focuses on performing Human Factors Analysis and Classification System
(HFACS), BowTie Analysis, AcciMap, Causal Analysis based on System
Theory (CAST), Root Cause Analysis (RCA), and the Functional Resonance
Analysis Method (FRAM).

The Aviation Safety Analyst exhibits high reliability in structuring and
processing complex data inputs to generate detailed, evidence-based analyses.
It is designed to minimize cognitive biases, provide consistent results,
and adapt to diverse aviation scenarios. Its data-driven approach ensures
objectivity, while its integration of multiple analytical frameworks enhances
comprehensive safety evaluations.

The FAA, EASA, and ISASI play crucial roles in shaping the guidelines
for AI’s application in aviation safety. The FAA emphasizes rigorous
safety assessments and validation procedures before AI technologies are
integrated into operational environments. EASA’s AI Roadmap 2.0 outlines
a comprehensive approach to AI governance, advocating for explainable,
transparent, and ethically sound AI systems in aviation (EASA, 2023).
ISASI complements these regulatory frameworks by promoting investigative
methodologies that leverage AI to enhance data accuracy and decision-
making.

Annex 13 to the Convention on International Civil Aviation provides
the international standards for aircraft accident and incident investigations.
It underscores the importance of factual data collection, analysis, and
unbiased reporting—principles that align seamlessly with AI’s capabilities.
AI can automate data extraction from flight recorders and operational logs,
increasing the efficiency and precision of investigations. Its role in simulating
accident scenarios and predicting causal factors aligns with Annex 13’s
objective to prevent future occurrences (ICAO, 2020).

• The Shift from Safety-I to Safety-II in AI-Driven Investigations

Safety-I focuses on understanding failures to prevent recurrence, while
Safety-II emphasizes system resilience and the capacity to succeed under
varying conditions. AI supports both paradigms: It enhances Safety I by
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identifying root causes of failures through data analytics and promotes
Safety II by monitoring real-time data to foresee potential disruptions and
adapt strategies proactively (Hollnagel, 2017). This dual capability fosters
a comprehensive safety culture that reacts to incidents and anticipates and
mitigates risks.

AI’s strength lies in its data-driven approach. Machine learning algorithms
analyze vast datasets to uncover patterns that might elude human
investigators. These patterns help reconstruct accident sequences, understand
human-machine interactions, and evaluate the effectiveness of safety
interventions. AI-driven predictive models can simulate various accident
scenarios, providing insights into how different factors could have influenced
outcomes (EASA, 2023).

Human factors are critical in aviation accidents, and AI significantly
enhances this analysis. Natural Language Processing (NLP) tools analyze
cockpit voice recordings and communication logs to detect signs of
stress, cognitive overload, or miscommunication among crew members.
This capability provides investigators with a deeper understanding of the
human elements involved in accidents, leading to more targeted safety
recommendations (Kirwan, 1994).

Finally, the presented Aviation Safety Analyst application embodies a
significant advancement in aviation safety analysis. Integrating diverse,
robust analytical methods into a single AI-powered platform enhances
the efficiency, depth, and accuracy of aviation accident and incident
investigations. This tool not only aids in understanding past events but also
contributes to proactive safety management and risk mitigation strategies.

CONCLUSION

AI represents a transformative force in aviation accident investigations,
offering capabilities that enhance data analysis, predictive modeling, and
decision support. By aligning with international regulatory frameworks
and embracing Safety I and II principles, AI can significantly improve
aviation safety outcomes. However, addressing ethical concerns, ensuring
data integrity, and fostering a culture of innovation are critical to maximizing
AI’s impact in this field.
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