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ABSTRACT

The advent of autonomous driving reduces human control and situational awareness
on the road, significantly increasing the likelihood of motion sickness (MS) among
passengers. This review explores key physiological measurement methods for
detecting MS in autonomous vehicle environments, emphasizing the effectiveness
of various biosensors—such as those monitoring body motion, brain activity, eye
response, and heart rate. It highlights the potential of multi-sensor fusion methods
to enhance sensor usability and provide comprehensive, real-time MS detection,
ultimately improving passenger comfort.
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INTRODUCTION

Traditional motion sickness (MS) assessment methods primarily rely
on subjective questionnaires, such as the Motion Sickness Assessment
Questionnaire and the Fast Motion Sickness Scale (Reinhard et al., 2017).
While useful for statistical analysis, these tools are limited by their inability
to capture real-time physiological changes and dependence on self-reporting.
This subjectivity hampers accurate, continuous MS detection in autonomous
vehicle settings. In contrast, biosensor technology presents a promising
alternative, enabling objective measurement of physiological responses for
continuous, real-time monitoring, which could enhance MS detection and
passenger comfort (Wang, Liang, Monteiro, Xu, & Xiao, 2023).

The advancements in biosensor technology allow for real-time detection of
MS by measuring objective physiological responses across various biological
systems, including the digestive, central nervous, and autonomic systems
(Koohestani et al., 2019). Biosensors convert biological responses—such as
pulse rate, blood pressure, and gastrointestinal signals—into quantifiable
data, offering a viable alternative to subjective MS assessments (Iskander
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et al., 2019). This review synthesizes experimental findings from the past
decade to evaluate the effectiveness of physiological biosensors for MS
detection in autonomous vehicles. It underscores the potential of multi-sensor
fusion methods to provide a comprehensive, accurate framework for real-
time MS monitoring, addressing individual and environmental variability to
enhance passenger comfort.

METHODOLOGY

This study reviews research conducted over the past decade on MS
detection using biosensors in vehicle environment. Electronic databases were
searched, including SAGE Journals, IEEE Explore, Elsevier Science Direct
and ACM Digital Library. Keywords used include motion sickness, detection,
biosensors and autonomous vehicle. Duplicate articles were removed, articles
from same author were compared and 26 most relevant articles were finally
selected from 6202 for detailed review. The major inclusion criteria are:

« The study must investigate the use of biosensors in detecting motion
sickness within the context of autonomous vehicles, focusing on
physiological measurement methods.

« It should identify and analyse key physiological signals that contribute to
real-time and objective motion sickness detection.

« The study should present findings that enhance the understanding of
biosensor usability or address challenges such as individual variability
and environmental factors in motion sickness monitoring.

Added records

identified
o After duplicate After full text through
identified reading with secondary web
I b datab. removal and _ Feading with o
through database shatract veading inclusion criteria search or
searching (N=48) N=22 backward
(N=6202) (N=22) citation search
(Total article

included N=26)

Figure 1: Flow chart for article selection process.

RESULT

The sensors involved in detecting MS are categorized according to the type
of biological signal measured, including: Body Motion Detection, Brain
Activity Detection, Stomach/Gastric Response Detection, Eye Response
Detection, Heart/Cardiac Response Detection, Skin Response Detection,
Body Temperature Detection.

Body motion sensors track postural instability linked to motion sickness
(Diels & Bos, 2016). Techniques such as motion capture suits combine neural
network analysis demonstrate the significant role of body movement in the
onset and severity of motion sickness symptoms. Electroencephalography
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(EEG) and Functional Near-Infrared Spectroscopy (fNIRS) detect brain
signals during motion sickness, highlighting affected regions like the left
frontal cortex (Zhang, Li, Li, Li, & Nie, 2020). Machine learning applied
to EEG data shows promise in accurately predicting symptoms. Gastric
activity measured by electrogastrogram (EGG) links nausea and dysrhythmia
to motion sickness (Jakus, Sodnik, & Miljkovic, 2022). Although non-
invasive, EGG data may vary with posture, limiting its real-time application
in autonomous vehicles. Eye-tracking and pupillometry monitor indicators
like blink rate and pupil size, which are associated with motion sickness
(Adachi et al., 2014). While effective, these methods can be costly and face
challenges with calibration and adaptability in vehicle environments. Heart
rate (HR) and variability (HRV) are commonly measured using electrocar-
diography (ECG) or photoplethysmography (PPG) to capture autonomic
responses to motion sickness. While wearable PPG devices offer convenience,
inconsistent HR data suggests that further research is needed to establish
reliable markers (Rauterberg, Delbressine, Terken, Md Yusof, & Karjanto,
2022). Electrodermal activity (EDA) monitors sweat response during motion
sickness. Increases in EDA generally correlate with symptoms, but individual
variations indicate the need for a more refined understanding of these
responses (Smyth, Birrell, Woodman, & Jennings, 2021). Changes in facial
and body temperature, detected via wristband or thermal imaging, have
proven inconsistent as motion sickness indicators. External factors, such as
climate control, can affect results, necessitating further study for reliability.
Additional signals, such as respiratory rate (Keshavarz, Peck, Rezaei, & Taati,
2022) and myogenic potential changes, are also linked to motion sickness.

These findings show the complexity of physiological responses and
supports the integration of multiple bio-signals for comprehensive detection.
The results also outline various physiological and sensor-based indicators
associated with MS, detailing the increase or decrease of each indicator under
MS conditions, along with relevant studies, see Table 1.

Table 1: Biosensor detection results from selected articles.

Measurement Indicator Result Reference
Body Motion Motion Sickness Dose Increase (Karjanto et al., 2018)
Values (MSDV)
Head rotation variation  Increase (Brietzke, Xuan, Dettmann, &
Bullinger, 2021)
No Change (Irmak, Pool, & Happee,
2021)
The number of Increase (Nooij, Bockisch, Bulthoff, &
inadvertent micro Straumann, 2021)
head movements
Head and torso Increase (Chang, Chen, Kung, &
movement in Stoffregen, 2017)
mediolateral axes
Head and torso No effect (Chang et al., 2017)

movement in
anteroposterior axes

Continued
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Table 1: Continued

Measurement Indicator Result Reference
Mean accumulated jerks Increase (Shizuka Bando, Yuri Shiogai,
for head longitudinal & Hirao, 2021)
movement
Variation of mean Increase (Keshavarz et al., 2022)
displacement of body
Pressure at seat back Increase (M. Beggiato, Hartwich, &
Krems, 2018)
Motion sickness Increase (Wada, Fujisawa, & Doi,
incidences (MSI) 2018)
Increase (Buchheit, Schneider, Alayan,
Dauth, & Strauss, 2022)
EEG Theta power Increase (Henry, Bougard, Bourdin, &
Bringoux, 2021)
Alpha power Increase (Henry et al., 2021; Huang
et al.,2021)
Beta power Most effect (Recenti et al., 2021)
fNIR Oxyhemoglobin Increase (Tan et al., 2022)
(O2Hb): Left Decrease
prefrontal cortex Decrease
(TX1,TX2) Left
prefrontal cortex
(TX3,TX4) Right
prefrontal cortex
(TX1,TX2,TC3,TX4)
Deoxyhemoglobin Increase (Tan et al., 2022)
(HHDb): Left Decrease
prefrontal cortex Decrease
(TX1) Left prefrontal
cortex
(TX2,TX3,TX4)
Right prefrontal
cortex
(TX1,TX2,TC3,TX4)
Total hemoglobin (tHb):  Increase (Tan et al., 2022)
Left prefrontal cortex Decrease
(TX1) Left prefrontal Decrease
cortex
(TX2,TX3,TX4)
Right prefrontal
cortex
(TX1,TX2,TC3,TX4)
Oxyhemoglobin Increase (Tan et al., 2022)
difference (HbDiff): Decrease
Left prefrontal cortex Decrease

(TX1,TX2) Left
prefrontal cortex
(TX3,TX4) Right
prefrontal cortex
(TX1,TX2,TC3,TX4)

Continued
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Table 1: Continued

Measurement Indicator Result Reference
Cerebral oxygen Highest (Zhang et al., 2020)
exchange (Striaght
activity — (COS): The driving)
visual cortex of the Highest
occipital lobe (BA17 (Curved
and BA18) and the driving)
frontal cortex (BA6)
The visual cortex of
the occipital lobe
(BA17 and BA18) and
the prefrontal cortex
(BA10)
Eye Response The resting potential of  Increase (Adachi et al., 2014)
the retina
Pupil diameter Increase (Beggiato et al., 2018;
Matthias Beggiato,
Hartwich, & Krems, 2019;
Niermann et al., 2021)
Interblink time Increase (Beggiato et al., 2018;
Matthias Beggiato et al.,
2019)
Eye blink Decrease (Beggiato et al., 2018;
Matthias Beggiato et al.,
2019)
Eye fixation No change (Brietzke et al., 2021)
EGG Dominant frequency No change (Popovic et al., 2019) (Gruden
(DF) Increase, etal., 2021)
significant
Median frequency (MF) No change (Popovic et al., 2019) (Gruden
Increase, not et al., 2021)
significant
Crest factor (CF) No change (Popovic et al., 2019) (Gruden
Decrease, et al., 2021)
significant

Root mean square
(RMS)

Increase Increase
but not

(Popovic et al., 2019) (Gruden
etal.,2021)

significant
Percentage of spectral No change (Popovic et al., 2019)
power in the
normogastric range
(24 cpm)
Percentage of the high Increase, (Gruden et al., 2021)
power spectrum significant

density (FSD)

Maximum magnitude of

Increase but not

(Gruden et al., 2021)

power spectrum significant
density (MFM)

Percentage of Increase (Schartmiiller & Riener, 2020)
tachygastria activity

Percentage of Increase (Schartmiiller & Riener, 2020)

arrhythmia activity

Continued
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Table 1: Continued

Measurement Indicator Result Reference
Dominant frequency in  Increase (Schartmiiller & Riener, 2020)
contractions per
minute (DF cpm)
Maximum power No effect (Schartmiiller & Riener, 2020)
spectrum density in
decibels (MPSD dB)
Gastric contractions No effect (Keshavarz et al., 2022)
(EGG)
Heartbeat/Pause HR Decrease (Beggiato et al., 2018;
Increase Matthias Beggiato et al.,
2019; Karjanto et al., 2018;
Schartmiiller & Riener,
20205 Schneider et al., 2022)
(Gruden et al., 2021;
Keshavarz et al., 2022;
Kojima, Ohsuga, Kamakura,
Hori, & Watanabe, 2022;
Tan et al., 2022)
IBI Decrease (Keshavarz et al., 2022)
RMSSD Decrease (Schartmiiller & Riener, 2020)
LF/HF Decrease (Irmak et al., 2021)
LF Increase (Bando et al., 2021)
Skin Conductivity EDA No effect (Beggiato et al., 2018;
Matthias Beggiato et al.,
2019)
Increase (Gruden et al., 2021; Irmak
et al., 2021; Keshavarz et al.,
2022; Schneider et al., 2022;
Shizuka Bando et al., 2021;
Tan et al., 2022)
Skin Temperature Facial temperature Decrease (Keshavarz et al., 2022)

Body temperature

No significant

(Bando et al., 2021)

changes
Increase (Keshavarz et al., 2022)
Increase (Schartmiiller & Riener, 2020)

No significant
changes

(Tan et al., 2022)

The table summarizes physiological indicators of motion sickness and
their trends across multiple measurement domains. Body motion metrics,
such as motion sickness dose values and head movements, predominantly
showed increases. Brain activity revealed increases in theta, alpha, and beta
power, with hemoglobin changes in fNIR demonstrating regional specificity.
Eye metrics, including pupil diameter and inter-blink time, increased, while
blink frequency decreased. Gastric responses showed significant increases in
spectral power density and tachygastria activity. Heart rate metrics varied,
with a general trend of reduced autonomic regulation. Skin conductivity
and body temperature generally increased, while facial temperature changes
were inconsistent. These findings provide valuable physiological insights for

motion sickness detection.
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DISCUSSION

The application of biosensors for detecting MS in transportation settings,
particularly in autonomous vehicles, shows significant promise. The results
indicate that physiological responses to MS are complex and multifaceted,
with different biological signals providing complementary insights. While
single-sensor approaches can capture specific aspects of MS, a multimodal
fusion strategy integrating multiple biosignals—such as motion data, EEG,
HRYV, EDA, and gastric responses—could significantly improve detection
accuracy.

Despite promising results, several challenges remain. Environmental
factors (e.g., climate control affecting skin temperature), individual
physiological variations, and real-time signal variability pose limitations to
current sensor-based MS detection (Podoprigora, Marusin, Pegin, Karelina,
& Akulov, 2022). Additionally, future research should prioritize the
development of reliable and resilient multi-sensor fusion techniques that
can effectively integrate physiological, vehicular motion, and environmental
data for real-time MS monitoring (King et al., 2017). Advances in machine
learning and deep learning algorithms can further refine signal interpretation,
improving classification accuracy. Moreover, enhancing wearable sensor
technology for greater usability (Liu, Zhang, Chen, Liu, & Zhang,
2021), comfort, and reliability will be crucial for practical deployment in
autonomous vehicle applications.

CONCLUSION

This review underscores the potential of biosensors for achieving real-time,
objective detection of motion sickness in autonomous vehicles. Despite
progress, individual variability and environmental factors pose ongoing
challenges to sensor reliability. Future research should prioritize sophisticated
multi-sensor fusion techniques, integrating diverse physiological and
environmental data, to enhance accuracy and usability in MS monitoring,
ultimately promoting passenger comfort in autonomous driving contexts.
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