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ABSTRACT

With the continuous development of intelligent vehicle technology, Augmented Reality
Head Up Display (AR HUD), as a new type of human-machine interaction interface, is
gradually being applied to automated vehicles. AR HUD provides drivers with intuitive,
real-time driving information by seamlessly integrating virtual images with the real
road environment, significantly improving driving safety and comfort. The guidance
function of AR HUD can not only prompt obstacles, but also effectively reduce the
cognitive burden during driving. This paper investigates the effect of AR HUD on
the driver’s interaction responses in emergency obstacle avoidance scenarios during
automated driving mode. First, we built a Level 2 automated vehicle model in a driving
simulator environment. A collision scenario was built between the automated vehicle
and the motorcycle at the un-signaled intersection. Secondly, we developed three
HMI information reminder modes for traffic conflicts during the automated driving
operation, namely baseline type, risk-alert type, and AR HUD risk visualization type.
8 subjects were recruited to conduct our experiment to analyze what type of
information presentation would give drivers more confidence to let the automated
vehicle run autonomously without takeover when it driving in conflict scenarios.
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INTRODUCTION

With the rapid advancement of automotive technology, automated driving
systems are gradually transforming traditional driving methods (Xu, 2020).
However, the AVs are still likely to remain in the stage of human-machine
collaborative driving for a prolonged period (Ma and Zhang, 2024). The level
of trust that drivers place in automated driving systems directly affects both
system effectiveness and overall safety (Azevedo-Sa et al., 2021; Manchon
et al., 2022). As an innovative human-machine interaction interface,
Augmented Reality Head-Up Display (AR HUD) seamlessly integrates virtual
information into the real road environment, offering new possibilities for
enhancing driver trust in automated driving systems (Schomig et al., 2018).

Driver trust is a critical factor in automated driving systems. Studies have
shown that a lack of trust in the system often leads to excessive takeover
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behavior, which not only reduces the efficiency of automated driving but may
also introduce additional safety risks (Pan et al., 2023). This is particularly
crucial in high-risk scenarios, such as emergency obstacle avoidance, where
the driver’s level of trust significantly impacts the system’s normal operation.
If drivers can appropriately trust the system’s decision-making capabilities
and allow it to operate autonomously within its designed scope, the
advantages of automated driving technology can be more effectively realized
(Ma and Zhang, 2021).

Driver perception of risk plays a crucial role in the trust-building process.
Perceived risk reflects the level of risk experienced by automated driving
users, which may differ from the actual risk (Griffin et al., 2020). In
recent years, extensive research has been conducted on the relationship
between perceived risk and trust. According to Hoff and Bashir’s trust model
(Hoff and Bashir, 2015), situational trust is formed and adjusted based on
the driver’s perception when interacting with an automated driving system
(ADS). Hu et al., (2024) hypothesized that perceived risk hinders driver trust
and proposed a trust estimation framework based on perceived risk and
driver behavior characteristics. He et al., (2022) evaluated drivers’ perceived
risk and trust levels under SAE Level 2 automated driving conditions when
encountering cut-in and hard-braking vehicles. Their findings indicate a
strong correlation between perceived risk and trust, with both sharing similar
determining factors. Since drivers are not directly engaged in the driving task,
they may misinterpret traffic risks in complex scenarios (Qu et al., 2023).
Therefore, designing appropriate human-machine interaction interfaces to
help drivers develop an accurate perception of risk is essential for fostering a
healthy human-machine trust relationship.

During L2 automated driving, while the system handles basic vehicle
control tasks such as steering and speed adjustment, drivers must remain
vigilant and ready to take over control at any time (SAE International, 2021).
This dual-task requirement of monitoring both the driving environment and
the automation system creates unique challenges for information processing
and situation awareness (Avetisyan et al., 2022). Traditional in-vehicle
information display systems primarily rely on dashboards and central control
screens. However, these conventional display methods often suffer from
low information retrieval efficiency and high cognitive load. In complex
driving scenarios, drivers must quickly acquire and process large amounts
of information, and the limitations of traditional displays may undermine
their trust in the system (Kim et al., 2024). In contrast, AR HUD
projects critical information directly into the driver’s field of view, enabling
natural information presentation and real-time interaction, which presents a
promising solution (Detjen et al., 2021; Xia et al., 2023).

AR HUD offers distinct advantages in automated driving scenarios. First, it
intuitively displays potential hazards and system decision-making intentions,
helping drivers better understand system behavior. Second, by minimizing the
need for gaze shifts and reducing cognitive load, AR HUD enhances drivers’
situational awareness. Finally, real-time visual feedback can strengthen
drivers’ confidence in the system, fostering more effective human-machine
collaboration (You et al., 2024). Despite these advantages, there is still a
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lack of systematic research on how AR HUD can enhance driver trust in
automated driving systems under challenging conditions (Kettle and Lee,
2022).

METHODOLOGY
Participants

A total of eight drivers (five males and three females) participated in the
driving simulator experiment. The participants were between 20 and 29 years
old, with an average age of 22. All participants had held a valid driver’s
license for at least one year, were in healthy state. Upon completion of the
experiment, each participant received a compensation of 50 RMB.

Apparatus

This study utilized a fixed-base driving simulator consisting of a triple-screen
display with a resolution of 1920 x 1080, an instrument panel screen, a
Logitech G27 steering wheel, a set of accelerator and brake pedals, and a
driver’s seat, as shown in Figure 1(a). Participants’ eye-tracking data were
collected using the Tobii Pro Glasses 3 (Figure 1(b)), a head-mounted eye
tracker developed by Tobii, which allows for precise recording of gaze
behavior.

(a) Driving simulator. (b) Eye-tracking data collection.

Figure 1: Experiment setup.

Experimental Scenario

The experimental scenario was developed using Unity, simulating an urban
environment with bidirectional three-lane roads. The weather was set to clear.
The ego vehicle traveled at a constant speed of 40 km/h on a 4.2 km straight
road segment leading to an unsignalized intersection, where it executed left
or right turns.

Three types of HMI information display modes were designed and
implemented, as shown in Figure 2. The baseline mode featured an
instrument panel that displayed only basic driving information including
vehicle speed and simple icons representing surrounding traffic participants.
The risk-alert mode enhanced the instrument panel by incorporating a color-
coded risk warning system based on time-to-collision (TTC) thresholds.
Following the risky thresholds in (Mahmud et al., 2017), the system used red
indicators for critical situations (TTC < 1s), orange for moderate risk (1s <
TTC < 2s), and green for low risk (2s < TTC < 3s). The AR HUD display
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mode utilized a head-up display to project the same risk-coded information
directly onto the driver’s forward field of view, overlaying warning indicators
on the actual traffic participants.

Two risk conditions were designed to evaluate driver responses: a low-risk
condition where the TTC consistently remained above 2s, and a high-risk
condition where the TTC dropped below 1s during the turning maneuver,
followed by ego vehicle braking to maintain a TTC above 2s.

(c)AR HUD.

Figure 2: HMI information display modes.

Experimental Procedure

The experimental procedure consisted of several stages. Before the formal
experiment, participants were given 10 minutes to acclimate to the
environment and familiarize themselves with the simulator, during which they
wore the eye tracker and completed the calibration process.

The experiment employed a Latin square design to counterbalance
the presentation order of the three HMI modes. For each mode,
participants experienced four experimental conditions, consisting of different
combinations of two risk levels and two road scenarios. They were informed
that they could take control of the vehicle at any time. After each scenario,
participants verbally rated their perceived risk (“How dangerous did you find
the previous event?”) and situational trust (“Based on the system’s previous
performance, to what extent do you trust the driving automation?”) using a
predefined scale.

] straight road [ Ursignalized | Oral questionnaire

segment intersection

Figure 3: Experimental procedure of each HMI condition.

After completing the four conditions within each HMI mode, a short
break was provided, during which the researcher organized the experimental
data. This procedure was repeated for all three HMI modes. In total, each
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participant completed twelve experimental trials (3 HMI modes x 2 risk
levels x 2 road scenarios).

Data Processing

The collected data included behavioral measures, subjective ratings, and eye-
tracking metrics. Behavioral data consisted of takeover responses recorded
for each trial. Subjective measurements were obtained using a 7-point Likert
scale, where participants rated their perceived risk and situational trust.
Eye-tracking data from the intersection turning phase were segmented and
analyzed. As shown in Figure 4, Areas of Interest (AOIs) were defined,
specifically targeting the road and the instrument screen, to analyze
participants’ visual attention distribution.

For pupil diameter analysis, we applied min-max normalization to
minimize individual differences between participants (Alrefaie et al., 2019).
For each participant, the maximum and minimum values of mean pupil
diameter data were extracted across all 12 scenarios and normalized to values
between 0 and 1 using Equation (1):

P—P,;
Pnormz—mm (1)

Pmax - Pmin

where P represents the original mean pupil diameter value, P,,;, and P4y are
the minimum and maximum values for each participant across all scenarios,
and P, 1s the normalized value.

Statistical analyses were performed using SPSS 26.0. Given the limited
sample size and non-normal data distribution, non-parametric tests were
employed. non-parametric tests were employed. Wilcoxon signed-rank tests
were used to compare differences between risk conditions, while Friedman
tests were conducted to examine the effects of different HMI modes.
For significant Friedman test results, post-hoc pairwise comparisons with
Bonferroni correction were performed.

Figure 4: Areas of interest (AQls).

RESULTS AND DISCUSSIONS

Analysis of Subjective Measures

The perceived risk of participants under three HMI conditions and two
risk levels is illustrated in Figure 5. Analyzing the perceived risk metrics,
the paired-sample Wilcoxon test results indicate a statistically significant



366 Hu et al.

difference between the low-risk and high-risk conditions (p = 0.002 <
0.05). Specifically, the perceived risk in the low-risk condition (M = 5.06,
SD = 1.450) is significantly lower than that in the high-risk condition
(M = 5.19, SD = 1.104). Furthermore, the Friedman test was conducted to
examine the impact of the three HMI modes. The results show that there is
no statistically significant difference among the three HMI modes (p = 0.708
> 0.05). This finding suggests that in emergency obstacle avoidance scenarios,
drivers can accurately recognize different levels of risk., while variations in
the HMI display mode do not significantly influence their risk perception.
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Figure 5: Perceived risk under different HMI modes and risk levels.

The situational trust of participants under three HMI conditions and two
risk levels is illustrated in Figure 6. Analyzing the situational trust data,
the paired-sample Wilcoxon test results indicate no statistically significant
difference between the low-risk and high-risk conditions (p = 0.622 > 0.05).
Furthermore, the Friedman test was conducted to examine the effect of the
three HMI modes. The results show that there is no statistically significant
difference among the three HMI modes (p = 0.760 > 0.05). This suggests that
drivers’ situational trust in the system remains relatively stable regardless of
the risk level or the specific HMI display mode. These findings imply that the
drivers’ situational trust in the automated system is not easily influenced by
variations in risk or interface design.
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Figure 6: Situational trust under different HMI modes and risk levels.
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To further explore the relationship between perceived risk and situational
trust, a Spearman correlation analysis was performed. The results revealed
a significant negative correlation between these two variables (r = —0.665,
p < 0.001), indicating that as drivers’ perceived risk of the system increases,
their situational trust in the system correspondingly decreases. This finding
suggests that drivers’ risk assessment during the human-machine interaction
process significantly influences their trust in autonomous driving systems.

The analysis of the takeover rate indicated a significant difference between
the low-risk and high-risk conditions, as revealed by the paired-sample
Wilcoxon test (p = 0.011 < 0.05). Specifically, the takeover rate under
high-risk condition (M = 0.521, SD = 0.208) was significantly higher than
that under low-risk condition (M = 0.229, SD = 0.197), as illustrated in
Figure 7. Furthermore, the Friedman two-way analysis of variance by ranks
was conducted to examine the effects of the three HMI modes, and the
results showed a significant difference among them (p = 0.049 < 0.05). These
findings suggest that both risk level and HMI display mode have a significant
impact on drivers’ takeover behavior.

Risk-alert HM1 AR-HUD

Figure 7: Takeover rate under different HMI modes and risk levels.

Analyses of Eye-Tracking Data

Figure 8 illustrates the average pupil diameter under different HMI modes
and risk conditions after max-min normalization for each participant to
eliminate individual differences. The results of the paired-sample Wilcoxon
test indicated a significant difference in pupil diameter between low-risk
(M = 0.427,SD = 0.310) and high-risk conditions (M = 0.551, SD = 0.361,
p = 0.009), suggesting that participants experienced increased cognitive
workload during high-risk situations. To further examine the effects of
different HMI modes, the Friedman two-way analysis of variance by ranks
was conducted, revealing a significant difference among the three HMI modes
(p < 0.001). After Bonferroni correction, post-hoc pairwise comparisons
showed that the pupil diameter in the Baseline mode (M = 0.625,
SD = 0.295) was significantly higher than that in both the Risk-alert mode
(M = 0.566, SD = 0.360, p = 0.005 < 0.05) and the AR HUD mode
(M =0.276,SD = 0.258, p = 0.001 < 0.05). This suggests that participants
experienced higher cognitive workload in the Baseline mode compared to
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the other two modes, with AR HUD being particularly effective in reducing
cognitive load in automated driving risk scenarios (Appel et al., 2018).

AR-HUD

Figure 8: Average pupil diameter under different HMI modes and risk levels.

Figure 9 illustrates the proportion of participants’ fixation time on the
road Area of Interest (AOI) relative to all AOIs under different HMI modes
and risk conditions. The results of the paired-sample Wilcoxon test indicated
no significant difference in road fixation ratio between low-risk and high-risk
conditions (p = 0.840 > 0.05). To further examine the effects of different HMI
modes, the Friedman two-way analysis of variance by ranks was conducted,
revealing a significant difference among the three HMI modes (p < 0.001).
After Bonferroni correction, post-hoc pairwise comparisons showed that the
road fixation ratio in the Risk-alert HMI mode (M = 0.716, SD = 0.282)
was significantly lower than that in both the Baseline mode (M = 0.865,
SD = 0.187, p = 0.007 < 0.05) and the AR HUD mode (M = 0.923,
SD = 0.144, p < 0.001). As observed in Figure 9, the AR HUD mode resulted
in the highest road fixation ratio, whereas the Risk-alert HMI mode led to a
significant reduction in road fixation.

ARHUD

Figure 9: Road fixation ratio under different HMI modes and risk levels.

As illustrated in the eye-tracking heatmaps, the visual attention
distribution of a typical participant under the three HMI modes is presented
intuitively. In the Baseline HMI mode, since the dashboard only provides
basic driving information, the participant’s gaze is primarily concentrated
on the road scene to acquire interaction-relevant information. In contrast,
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under the Risk-alert HMI mode, the dashboard displays additional risk
warning information, prompting the participant to shift a substantial portion
of their visual attention toward the dashboard. The heatmap reveals frequent
gaze transitions between the road and the dashboard, indicating a divided
attention pattern. Meanwhile, in the AR HUD mode, where risk information
is directly overlaid onto the forward road scene, the heatmap shows that
the participant’s gaze remains highly concentrated on the road area. This
information presentation method enables the participant to obtain critical
risk information while maintaining continuous attention to the driving
environment.

(a) Baseline HMI  (b) Risk-alert HMI (c) AR-HUD

Figure 10: A typical subject’s eye-tracking heatmap under three HMI modes.

CONCLUSION

This study examined the impact of different Human-Machine Interface
(HMI) display modes on driver trust and behavior in risk scenarios under
SAE Level 2 automated driving conditions. The results indicate that drivers’
situational trust of the automated driving system is significantly correlated
with their perceived risk, while the type of HMI modes and risk level had
relatively minor effects. AR HUD helped drivers maintain focus on the
road and reduced unnecessary interventions by presenting risk information
in a more intuitive manner. Among the three HMI modes, the AR HUD
group exhibited the lowest cognitive load and the lowest takeover rate,
suggesting that drivers were more confident in allowing the automated
system to handle critical situations. In contrast, the Risk-Alert mode led to
a moderate takeover rate, while the Baseline mode resulted in the highest
takeover frequency, reflecting drivers’ greater hesitancy to rely on automation
when no enhanced risk visualization was provided. The research results
are valuable for studying the influence of HMI design on driver trust in
automated vehicles and provide insights into optimizing human-machine
collaboration.
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