Advances in Human Factors of Transportation, Vol. 186, 2025, 437-447 AH FE
https://doi.org/10.54941/ahfe1006533 |pternational

Decision Support System to

Guide User-Centric Cooperative,
Connected, and Automated Mobility
(CCAM) Deployments: The SINFONICA
Knowledge Map Explorer

Anna Antonakopoulou, Konstantinos Fokeas,
Evangelos Tsougiannis, Maria Krikochoriti, and Angelos Amditis

Institute of Communication and Computer Systems (ICCS), 9 Ir. Polytechneiou
Zografou, Athens, Greece

ABSTRACT

This paper presents the SINFONICA Knowledge Map Explorer (KME), a decision-
support tool designed to support the inclusive deployment of Cooperative, Connected,
and Automated Mobility (CCAM) solutions. The KME consolidates data from multiple
sources—interviews, focus groups, and workshops across four European contexts—
to capture the needs, preferences, and concerns of diverse stakeholder groups,
including vulnerable road users, transport operators, service providers, and public
authorities. The resulting ontology-driven framework, implemented in Protégé using
OWL (Web Ontology Language) and facilitated by the Cellfie plugin, enables the
dynamic organization and visualization of CCAM-related knowledge. The KME
functions as an intelligent navigation system, combining a Semantic-Based System
with a Rule-Based System to provide context guidance. By harmonizing explicit
and inferred knowledge, it generates tailored recommendations for CCAM solutions
based on user type, scenario, and other contextual factors. This paper details the
conceptual foundation, architectural specifications, and implementation roadmap for
integrating the KME’s semantic and rule-based components. The resulting unified
solution supports stakeholders by offering evidence-based insights and best practices,
fostering more equitable and sustainable CCAM deployments.

Keywords: Knowledge management system, Web ontology language (OWL), Sinfonica project,
Semantic-based system, Rule-based system, Decision support system, CCAM

INTRODUCTION

The work presented is part of the SINFONICA! project, funded by the
EU, which aims to develop effective and innovative strategies, methods,
and tools to engage users, providers, and stakeholders within the
Cooperative, Connected, and Automated Mobility (CCAM) ecosystem. This
includes citizens, particularly vulnerable users, transport operators, public

Thttps://sinfonica.eu/

© 2025. Published by AHFE Open Access. All rights reserved. 437

https://doi.org/10.54941/ahfe1006533

438 Antonakopoulou et al.

administrations, service providers, researchers, and vehicle and technology
suppliers. The objective is to systematically gather, understand, and organize
their needs, desires, and concerns regarding CCAM in a way that is both
manageable and actionable. SINFONICA will collaboratively create decision
support tools, including the Knowledge Map Explorer (KME), specifically
designed for CCAM designers and policymakers to facilitate the seamless
and sustainable deployment of CCAM, ensuring inclusivity and equity for
all citizens. However, SINFONICA isn’t meant to directly deploy, test, or
operate any CCAM systems, nor process personal data. Instead, it offers
methodologies, guidance, and recommendations. To facilitate this, public
datasets will be utilized and gathered—for example, through focus groups
and questionnaires.

This paper details the design, development, and architectural specifications
of the SINFONICA KME, a tool that synthesizes and presents essential
knowledge for CCAM solutions. The proposed tool utilizes an ontological
structure that captures interactions and dependencies within the
SINFONICA domain. The ontological framework is populated with data
from interviews, focus groups, and workshops conducted in four different
European contexts. For SINFONICA project needs, the Protégé tool (Gennari
et al., 2003), an open-source ontology editor and knowledge management
system, is employed. The transformation of structured data, like spreadsheets,
into an ontology is streamlined using Cellfie, a tool within Protégé,
facilitating the visualization and management of complex information.
The KME is informed by data on user needs, preferences, concerns, and
challenges, playing a crucial role in linking CCAM deployers, stakeholders,
and users with tailored insights. The KME acts as an intelligent navigation
system, offering stakeholders specialized guidance on implementing CCAM
solutions based on user type, context, and scenario. It leverages ontologies
and expert-driven mapping, using the formal language Web Ontology
Language (OWL) (Antoniou et al., 2009) for structured representation. By
employing a dual-system architecture—the Semantic-Based System and the
Rule-Based System—this work specifies how the KME will recommend best
practices in CCAM based on explicit and inferred knowledge. The tool
provides stakeholders with accessible, domain-specific insights, supporting
the development of inclusive CCAM technologies. The system architecture
specification translates the SINFONICA conceptual framework into a
practical implementation plan. It specifies the technological components,
integration strategies, and configuration settings required to achieve the
objectives of the KME. Detailed in the document, the development of the
backend system begins with a requirement analysis and specifications to
identify core functionalities based on end-users’ needs and user stories.
Following this, the development of the Semantic-Based System is explained,
and the implementation of the Rule-Based System is showcased, illustrating
how predefined rules govern system behavior. Finally, the integration of
the components is discussed, demonstrating how the semantic and rule-
based systems are cohesively combined to deliver a unified solution that
meets the specified requirements. The document guides the reader through
the development and integration of the KME. It begins with Requirement

Decision Support System to Guide User-Centric CCAM 439

Analysis and Specifications, defining the objectives and constraints of
the project. The Ontology Structure chapter establishes the framework
of concepts and relationships, followed by the Populate the Knowledge
Map, which focuses on enriching the ontology with relevant data. The next
chapter, Implementation of the Rule-Based System, explains how reasoning
and decision-making mechanisms are developed using the knowledge base.
Finally, Integration of the Components and the Workflow Summary describe
how all elements come together to form a functional system.

REQUIREMENTS ANALYSIS AND SPECIFICATIONS

Functional requirements describe the core capabilities and features that
the system must deliver. For a rule-based recommendation engine with
ontologies, these include:

Table 1: Functional requirements.

Type of Functional Requirements Comments

User Profiles Management Preferences: Users can explicitly
set preferences such as categories,
or attributes. User Classification:
The system should classify users
based on their preferences and
map them to relevant segments in
the ontology.

Item Management Item Relationships: Manage
relationships between items (e.g.,
“belongs to,” “Equivalence to”).

Ontology-Based Ontology Creation: Define a
Recommendation knowledge base (ontology) with
well-structured relationships

between concepts, such as
users, items, and attributes.
Reasoning & Inference: Use
reasoning mechanisms to infer
recommendations based on rules
and ontology relationships.

Rule-Based Engine Rule Definition: Define, manage,
and update rules based on user
profiles and item attributes. Rule
Execution: Apply rules to infer
which items to recommend to the
user.

Real-Time Recommendations Provide recommendations
in real-time, based on user
behaviour, preferences, and rule
execution.

Non-functional requirements define the performance, security, and
reliability characteristics of the system.

440 Antonakopoulou et al.

Table 2: Non-functional requirements.

Type of Non-Functional Comments
Requirements
Scalability The system should handle

growing user bases and a large
volume of item metadata.
Performance Latency: Recommendations
must be generated within a
reasonable time frame. The
system must be capable of
handling a large number of

recommendation requests
simultaneously.
Maintainability The rule-based engine should

allow easy rule modifications and
updates. Updating the ontology
structure should not break the
system’s functionality.

Security User Data Protection: Since the
KME is not expected to ask
the user to register or track any
information about the activity of
the user, this functionality was
not considered.

Extensibility The system should be easily
extendable to add new
recommendation rules, modify
ontologies, or integrate new data
sources as needed.

Availability and Fault Tolerance Availability: Ensure the system
has high availability with
minimal downtime.

ONTOLOGY STRUCTURE

The ontology structure had to capture the interactions and dependencies
within SINFONICA domain. After having this structure in place,
the instances were added within the ontology following the project’s
requirements. These instances were created based mainly from data derived
from interviews, focus groups and workshops. For the requirements of
SINFONICA project Protégé tool was used, which is an open-source ontology
editor and knowledge management system. Even though listing all the classes
and subclasses created within the project is out of scope of this paper, the main
classes along with their description is listed below:

1. The Data Concept represents elements consolidated from already
available open access ontologies, research activities within SINFONICA,
while also includes data collected from interviews, focus groups and
workshops.

Decision Support System to Guide User-Centric CCAM 441

2. The Domain Concept consist of a wide range of entities and information
relevant to the CCAM (Connected, Cooperative, and Automated
Mobility) ecosystem. It includes the stakeholders and citizens preference
and priorities such as education, work, and leisure/sports, as well
as participants’ mobility behaviours. Additionally, it accounts for
properties related to transportation and data concerning user acceptance.

3. The General Concept includes individual’s personal situation, and
specific characteristics of users such as age, income level, ethnicity,
etc. These elements help provide context about users and address their
unique traits.

4. The Recommendations class is wused to organize different
recommendation types, depending on the subject. These
recommendations include guidelines and best practice towards safety,
accessibility, affordability, or other topics depending on the context and

requirements.
Classes Object properties Data properties
e R O Asserted v

v owl:Thing
> DataConcept
DesireType
4 DomainConcept
= GeneralConcept
PrivateBikeOwnership

> Recommendations
Trustworthiness__QuestionnaireD4
> Trustworthiness__QuestionnaireD5

Trustworthiness__QuestionnaireD6
Trustworthiness__QuestionnaireD7

Figure 1: Main classes of the KME as depicted on Protégé.

POPULATE THE KNOWLEDGE MAP

Populating the KME from structured data like spreadsheets into an ontology
was performed using Cellfie?, a module within the Protégé ontology editor.
Cellfie is a common way to transform spreadsheet data into structured
ontology models, while this process enables you to visualize and manage
complex information more effectively. Below is a brief description on how
Cellfie was used for populating a knowledge map from spreadsheet data
(interviews and focus groups). The spreadsheets had to be transformed into
a well-structured machine-readable format before importing them into the

2https://github.com/protegeproject/cellfie-plugin

442 Antonakopoulou et al.

ontological schema. The structure of the spreadsheet had to be transformed
into columns, rows and headers as follows:

« Columns: Each column should represent a specific attribute or property.

« Rows: Each row should correspond to an individual instance or entity.

« Headers: Use clear and descriptive headers for each column to avoid
confusion.

Table 3: Spreadsheets transformation (indicative structure).

Class Instance ID Property Value

Agent Participant believes CCAM is trustworthy
Agent Participant hasHabit Use Private Car
Agent Participant hasGender Female

After having the spreadsheets into the right format then the data records
were cleaned in order to follow consistencies in names, dates etc.

« Remove duplicates: Ensure no repeated instances.
. Fill missing values: Address any gaps in the data.
. Standardize formats: Use consistent formats for dates, names, etc.

Given that Cellfie uses a specific syntax to map spreadsheet data to
ontology classes and properties, mapping definitions had to be established.
The mapping definition specifies how each cell in the spreadsheet corresponds
to an element in the ontology. The mapping file that defines how your
spreadsheet data will populate the ontology is a plain text. An example of
a simple mapping definition is given on Table 4.

Table 4: Example of a mapping definition function.

Mapping Definition Function Comments

Class: @A* } o @A refers to the content in column A.
Annotations: rdfs:label @C* e« @C* refers to the content in column C.
SubClassOf: « @D* refers to the content in column D.

:hasProperty some (
rdfs:label “name” xsd:string and
:wvalue @D*)

The same procedure as described above had to be followed for every
collected file.

IMPLEMENTATION OF THE RULE-BASED SYSTEM

The environment used to create rules is the Protégé and the Semantic Web
Rule Language (SWRL) (O’Connor et al., 2005) as the language to express
the Rules. For each recommendation, one or more rules, assigned into one
or more use cases. The use cases are certain outputs of the recommendation
engine based on certain criteria insert from the end user. The Pellet reasoner
(Sirin et al., 2007) was used to run the actual rules, which as a result created
the inferred RDF files, which are later uploaded to the Fuseki server (Chokshi

Decision Support System to Guide User-Centric CCAM 443

etal.,2022). Finally, the SPARQL (DuCharme et al., 2013) is used for creating
queries that are then used in the API endpoints, depending on the parameters
added from the end user. An image indicating the creation of a rule-based
recommendation is illustrated below.

me I
I ceam_sinfonicaAgent(s) ccam_sif Status Fldery)
3608 ccam_sinfonica:Agent(?s) * ccam_si ‘OK ica Greece)

ccam_sinfonica Desire(?dr) " ccam_g - n P - . gam_sinfonicaisRecon
. s A lccam_sinfonica:Agent(?s) * ccam_sinfonicalivelnCountry(?s, ccam_sinfonica:Greece) * ccam_sinfonica:belongsTo(%s, [-
dability ccam_sinfonica:Agent(?s) * ccam_si PersonalFamilyAndRe

. - iccam_sinfonicaElderly) * ccam_sinfonica PersonalFamilyAndResidenceSituation(?”) * ; -
ssibily ccam_sinfonica:Agent(?s) * ccam _si N gl K A PersonalFamilyAndRe
M (ccam_sinfonicahasPersonalSituationFact?s, ™) * ccam_sinfonicalivesinAreaType(?f, ccam_sinfonica Urban) * "
pvement ccam_sinfonica:Agent(?s) * ccam_sif " A 1 PersonalFamilyAndRd
iccam_sinfonica:lmprovement_Recom(?r)* ccam_sinfonicahasSubject(?r, ccam_sinfonicaimprovement_Sub)-»
(ccam_sinfonicaisRecommendedFor(7r 7si

Figure 2: Example of a rule.

This rule says that as many guidelines have improvement as a theme,
should be recommended for citizens who live in Greece, are elderly and live
in an urban area.

By using Semantic Web Rule Language (SWRL), we established a rule-
based system that leverages ontologies and semantic reasoning to enhance
decision-making and recommendation accuracy. The SWRL enables the
definition of complex rules in the form of “if-then” statements that operate
with the ontology schema. SWRL is designed to cooperate with OWL thus
allowing both class-based logic as attribute specific conditions into the
rule set.

In order to apply the SWRL rules the Pellet reasoner was used to infer
logical outcomes based on the ontology. Pellet performs reasoning by
applying SWRL rules to the ontology, uncovering also new knowledge that
isn’t directly stated but can be inferred. The outcome of running the Pellet
reasoner is an inferred RDF file, containing enriched information. Apache
Fuseki was chosen as storage solution and querying RDF data. In order to
query and retrieve recommendation the SPARQL was used. An example of
a SPARQL query that brings the recommendations for those who are adults
live in urban areas of Greece, is the following:

PREFIX test:<http://www.iccs.gr/sinfonica/ccam_sinfonica#> PREFIX rdfs:
<http://www.w3.0rg/2000/01/rdf-schema#>
select distinct ?recom ?label
where
{ ?p test:hasPersonalSituationFact 2c .
?p test:liveInCountry test:Greece .
?p test:belongsTo test:Elderly .
2¢ test:livesInAreaType test:Urban .
?recom test:isRecommendedFor ?p .
?recom rdfs:comment ?label .

}

444 Antonakopoulou et al.

INTEGRATION OF THE COMPONENTS

To integrate the various components of a rule-based recommendation engine
using ontologies, it is essential to have an architecture that allows seamless
communication between the different layers. This architecture needs to
ensure that data flows between the frontend, the backend services, the rule
engine, the ontology, and the database. The system can be conceived as a
web application (client — server) with two main components, which are the
front-end and the back-end parts.

The following figure demonstrates an architecture diagram of the back-end
that utilizes a combination of technologies for semantic data management
and ontology-based querying.

‘ USER INTERFACE

Protege API (Classes,
Properties, Individuals, Protege GUI
SWRL) J
\—} Pellet Inference Engine

Backend

JAVA APP Sl
RODF Data Recommendation toal

RECOMMENDATION
[QUERY MODULE } [MODULE]

‘ Protege

Apache JENA Fuseki

Figure 3: Architecture of the KME.

The system architecture comprises of several interconnected components
that facilitate interaction between users and the semantic data. At the
forefront is the User Interface Application, which allows users to insert
queries and view the generated results. When a user submits a query, the
Query Module processes this input and forwards it to the Fuseki Server
for execution. Leveraging Apache Jena Fuseki, the Fuseki Server acts as an
HTTP interface that enables SPARQL querying over RDF datasets, effectively
bridging the Query Module with the underlying data storage and ontology
framework. Once the query is executed, the Results Module handles the
retrieval and presentation of results back to the user.

The Recommendation Engine serves as the system’s core, generating
recommendations by interacting with the Rule Engine and the Ontology to
produce suggestions based on predefined rules and relationships captured in
the ontology. Its components include the Rule Engine (Drools/SWRL), which

Decision Support System to Guide User-Centric CCAM 445

executes rule-based logic to infer which items to recommend by evaluating
conditions based on user preferences and item attributes, and the Ontology
Service (Pellet, Apache Jena), which manages the ontology and performs
reasoning tasks by assessing relationships between concepts such as user
preferences and item categories, thereby feeding this information into the
recommendation process. When a user requests a recommendation, the Rule
Engine queries the database to obtain relevant data like user preferences,
demographics then applies predefined rules to infer recommendations. For
example, a rule might state: “If a user identifies themselves as a CCAM
deployer interested in the preferences and priorities of elderly people located
in Greece who have low income and live in an urban area, recommend
the following guidelines to make the CCAM system more inclusive,” with
the Rule Engine evaluating this condition using the ontology. Furthermore,
a Database is utilized for storing item metadata and the ontology, with
subcomponents including Item Data that contains metadata and Ontology
Data (RDF Store) that stores the ontology in RDF format, enabling reasoning
and querying using SPARQL. The Recommendation Engine queries these
databases to retrieve the necessary data for producing recommendations by
accessing user data to understand preferences, item data to match these
preferences with item attributes, and ontology data where the Ontology
Service queries the RDF store for relationships and definitions to guide the
inference process. The Rule Engine evaluates predefined if-then rules to infer
recommendations, pulling information from user profiles, item metadata,
and ontology relationships to make decisions, interacting with the User
Profile and by obtaining user and item data and evaluating rules based on
these inputs, and with the Ontology Service by utilizing the ontology to
comprehend relationships.

The Protégé supports this architecture as an ontology development and
management tool. Protégé includes a graphical user interface for visualizing
and editing ontologies, a Protégé API for managing classes, properties, and
individuals within the ontology, and a database for storing ontology data.
Complementing Protégé, Apache Jena serves as the core framework for
building semantic web applications within the system. It provides various
APIs and modules, including the SPARQL API for executing queries, the
RDF API for data manipulation, and the Ontology API for interacting with
ontology structures. Apache Jena’s Inference API offers reasoning capabilities
through a built-in rule reasoner or integration with external reasoning
engines. For data storage, it offers both in-memory storage and TDB, a
persistent storage solution suitable for large RDF datasets.

Workflow Summary

1. User Interaction: The user interacts with a user interface (UI) to select
specific categories, like the type of demographic group and thus forming
the relevant query. The selections are sent to the backend server as a
structured request in HTTP query parameters.

2. Backend Server Receives Request: The server (Spring Boot application)
parses the user’s request to extract the selected categories.

3. Query Construction: Based on the user’s selections, the backend
dynamically generates a SPARQL query tailored to the user’s request.

446 Antonakopoulou et al.

4. SPARQL Query Execution: The backend uses the Apache Jena API to
execute the generated SPARQL query against the Fuseki server.

5. Pellet Reasoning (Precomputed Inference): The dataset in Fuseki already
includes data inferred using Pellet and SWRL rules, so the reasoning
process has been applied before querying.

6. Response Parsing: The query results, returned in SPARQL JSON format,
are parsed by the backend using Jena APIs.

7. Response to Ul: The transformed results are sent back to the Ul in a
JSON response via HTTP.

This architecture combines ontology management (Protégé) and semantic
querying capabilities (Apache Jena), creating a robust system for ontology-
based data querying and reasoning. This integration ensures that the front-
end, back-end services, rule engine, and ontology service work cohesively
to deliver accurate and personalized recommendations based on predefined
rules and ontological reasoning.

CONCLUSION

This paper outlined the system’s general architecture and the associated
technologies used, establishing the technical requirements and specifications
for building a rule-based recommendation system using ontologies. The
development process emphasized the integration of ontological reasoning
with a rule-based approach to ensure context-aware recommendations. A
usability evaluation test was conducted to assess the system’s effectiveness
and user experience. The feedback gathered from this test acted as input
for refining the system, ensuring it aligns with end-user needs. Future
work will focus on expanding the system’s capabilities to include dynamic
ontology updates, where automated mechanisms will be developed to adapt
and expand the ontology based on real-world data and insights generated
by machine learning models. This approach will enable the system to
stay current and relevant as new knowledge becomes available. Another
critical direction involves semantically enriched machine learning, combining
symbolic reasoning with data-driven models to enhance the accuracy and
reliability of inference processes.

ACKNOWLEDGMENT

This work was supported by European Commission under the Social
INnovation to FOster iNcluslve Cooperative, connected and Automated
mobility (SINFONICA) Project under Grant 101064988.

REFERENCES

Antoniou, G. & van Harmelen, F. (2009). Web ontology language: OWL. Handbook
on Ontologies, pp. 91-110.

Chokshi, H. J. & Panchal, R. (2022). Using Apache Jena Fuseki Server for Execution
of SPARQL Queries in Job Search Ontology Using Semantic Technology.
International Journal of Innovative Research in Computer Science & Technology,
10(2), pp. 497-504.

DuCharme, B. (2013). Learning SPARQL: Querying and Updating with SPARQL
1.1. O’Reilly Media, Inc.

Decision Support System to Guide User-Centric CCAM 447

Gennari, J. H., Musen, M. A.,; Fergerson, R. W., Grosso, W. E., Crubezy, M.,
Eriksson, H., Noy, N. F, & Tu, S. W. (2003). The evolution of Protégé: An
environment for knowledge-based systems development. International Journal of
Human-Computer Studies, 58(1), pp. 89-123.

O’Connor, M., Knublauch, H., Tu, S. W., Grosso, W. E., & Musen, M. A. (2005).
Supporting rule system interoperability on the semantic web with SWRL. The
Semantic Web-ISWC 2005: 4th International Semantic Web Conference, Galway,
Ireland, November 6-10, 2005. Proceedings, vol. 4, Springer Berlin Heidelberg,
pp. 97-112.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5(2), pp. 51-53.

	Decision Support System toGuide User-Centric Cooperative, Connected, and Automated Mobility (CCAM) Deployments: The SINFONICA Knowledge Map Explorer
	INTRODUCTION
	REQUIREMENTS ANALYSIS AND SPECIFICATIONS
	ONTOLOGY STRUCTURE
	POPULATE THE KNOWLEDGE MAP
	IMPLEMENTATION OF THE RULE-BASED SYSTEM
	INTEGRATION OF THE COMPONENTS
	Workflow Summary

	CONCLUSION
	ACKNOWLEDGMENT

