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ABSTRACT

The maritime industry is currently experiencing a period of rapid transformation,
driven by the integration of artificial intelligence (Al) technologies. This integration
is enabling advancements in autonomous navigation systems, remote monitoring
capabilities, and operational efficiency. However, these innovations are accompanied
by substantial privacy challenges, particularly in the management of sensitive data
collected from vessels. In this work, we propose a Federated Learning (FL) framework
tailored for the maritime environment. This framework aims to address privacy
concerns while leveraging the capabilities of Al. Utilizing the TUAS dataset, which
contains images, and employing the YOLOv8 object detection model, we demonstrate
how FL enables vessels to collaboratively train robust machine learning models
without sharing raw data. Our approach ensures that data collected on vessels, such as
images for navigation and object detection, remains onboard, thereby safeguarding
sensitive information. Each vessel trains a local YOLOv8 model on its image dataset
and shares encrypted model updates with a central server for aggregation. This global
model is then disseminated back to the vessels, ensuring enhanced performance
across the fleet without compromising data privacy. A comparison of our Fl-based
approach to traditional centralized training methods is presented, highlighting the
trade-offs in model accuracy, privacy preservation, and communication overhead. The
findings demonstrate that FL with YOLOvVS8 attains object detection performance that
is competitive with other methods, while addressing privacy concerns by keeping raw
image data localized. Integrating FL into the maritime industry provides a scalable and
secure solution for Al-powered applications, ensuring data privacy while promoting
innovation. Experimental result is a substantial contribution to the development of
privacy-preserving Al solutions for autonomous maritime operations and remote
monitoring, demonstrating FLs potential to transform the maritime industry.

Keywords: Federated learning, Maritime Al, YOLOvS8, Privacy-preserving Al, Autonomous
navigation, Object detection, Remote monitoring, Decentralized machine learning, Secure Al
training, Maritime surveillance

INTRODUCTION

FL is a decentralized machine learning approach that enables collaborative
model training across multiple entities without requiring the sharing of raw
data. This privacy-preserving framework is particularly well-suited for the
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maritime industry, where data sensitivity and operational confidentiality
are critical considerations (Khan et al., 2022). Artificial intelligence (Al)
has revolutionized the maritime sector by enhancing safety, efficiency, and
operational effectiveness. However, its implementation is often impeded by
privacy concerns and the inherently distributed nature of maritime data
sources. FL is a machine learning method that minimizes privacy risks by
enabling local model training in the maritime industry. It mines information
from identically distributed datasets, eliminating the need for centralized data
collection. Clients train models using their own data, and updated parameters
are transmitted back to a central server for global parameter updates.

The Federated Averaging (FedAvg) algorithm, introduced by McMahan
et al. (2017), is a foundational method in FL and forms the basis for most
subsequent research in this field. FedAvg is a simple yet effective aggregation
rule used in collaborative model training to achieve a globally accurate model
through iterative communication, ensuring data privacy while facilitating
updates from all participating clients.
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Figure 1: Workflow of a FL architecture in maritime industry.

The maritime industry is a critical sector that requires the protection of
sensitive data from various stakeholders, including ship operators, ports,
logistics providers, and regulatory authorities. Key aspects of privacy include
operational privacy, commercial privacy, personal data protection, regulatory
compliance, and security concerns (Graser, 2021). Operational privacy
involves maintaining confidentiality of ship routes, cargo manifests, fuel
consumption, and maintenance schedules, while commercial privacy protects
trade secrets and financial transactions. Security concerns involve mitigating
cyberattack risks.

FL, a privacy-preserving mechanism, is crucial for maritime applications
like fuel consumption prediction, anomaly detection, and predictive
maintenance. It allows ship operators to share fuel efficiency insights
without revealing proprietary operational details, promoting collective
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optimization (Li, 2020). FL enhances situational awareness and safety in
maritime operations by facilitating secure and efficient collaboration among
stakeholders, as illustrated in Figure 1.

Despite its potential, FL faces challenges such as data variability between
vessels and communication overhead during model aggregation, which may
limit its scalability. Nonetheless, FL provides a robust solution to protect
sensitive maritime data while promoting innovation and collaboration within
the industry.

The study explores the use of FL to address privacy concerns in the
maritime industry, focusing on safeguarding sensitive operational data in the
era of Al integration. It uses the TUAS dataset and YOLOvS8 object detection
model to demonstrate how FL allows vessels to train machine learning models
locally while sharing encrypted updates for centralized aggregation. FLs
robust object detection makes it suitable for applications like autonomous
navigation, remote monitoring, and operational optimization. The findings
contribute to the advancement of privacy-preserving Al solutions in the
maritime sector.

The rest of the paper is structured as follows: Section 2 discusses the
theoretical background and related work, focusing on FL concepts and
their challenges in maritime applications. Section 3 details the methodology
for the FedAvg algorithm, including its design, collaborator selection, and
weight aggregation. Section 4 provides an in-depth analysis of the dataset,
its experimental setup, and the specifics of its implementation. Section 5
provides an evaluation of the results and advantages of FL in maritime
applications. Section 6 of the paper provides a summary of the findings, their
implications for the maritime industry, and future research directions.

BACKGROUND

This section explores the application of FL in autonomous systems and
the maritime industry, examining previous methodologies, their limitations,
and highlighting the motivation behind our proposed approach. FL is a
popular method for training machine learning models collaboratively while
maintaining data privacy. The basis for FL, a decentralized learning paradigm
that combines local model updates to create a global model while preserving
local data privacy (Li, 2018). Improved FedAvg by introducing a proximal
term in the local objective function to mitigate non-IID data effects.

Autonomous systems, including autonomous vehicles, utilize robust
machine learning models for navigation, anomaly detection, and decision-
making, with FL leveraging distributed data while maintaining data privacy.
Lu et al. (2019) and Brik et al. (2020) used FL in autonomous vehicles
and drones for traffic prediction and object detection, demonstrating
its effectiveness in reducing communication costs and improving model
accuracy, while also mitigating privacy concerns and enabling data sharing
across devices.

The maritime industry presents unique challenges for FL due to
decentralized vessels, non-IID data distributions, and data privacy. FL
has been used in marine navigation systems and anomaly detection, but
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convergence challenges arise due to heterogeneity in maritime data. Improved
aggregation techniques are needed to handle diverse and non-IID data
distributions. FLCSDet, a cross-spatial vessel detection framework, enhances
accuracy while preserving privacy and addressing data aggregation and
heterogeneity issues. FL enables decentralized model training for maritime
vessels operating independently and in remote locations, enhancing data
privacy and preventing centralized access and breaches. Techniques like
Federated Entropy Pooling (FedEP) can address these issues by utilizing local
data distribution statistical characteristics for improved model aggregation.

The adaptability of FL and YOLOVS in promoting real-time decision-
making and privacy preservation is further demonstrated by applications
in driverless cars. YOLOvVS is optimized for object detection in vehicular
networks, as shown by Quéméneur and Cherkaoui (2024), improving the
capabilities of autonomous cars in real-time situations. Additionally, FL
makes it possible to train models without sending sensitive data, which
is essential for protecting user privacy in ecosystems of connected vehicles
(Quéméneur and Cherkaoui, 2024).

Section 2 explores the use of FL concepts in the maritime industry,
highlighting their potential to address privacy concerns and improve
operational efficiency. Key applications include navigation systems, anomaly
detection, and environmental monitoring. However, challenges with
handling non-IID data distributions and model resilience persist. Advanced
aggregation methods and encryption technologies are crucial. Section 3
examines a proposed methodology using YOLOvVS and FL to address these
issues.

METHODOLOGY

This chapter explores the use of the FedAvg algorithm and YOLOv8 object
detection model to improve detection capabilities while maintaining data
privacy. It covers preprocessing, model architecture, FL setup, FeDAvg
aggregation method, and performance evaluation metrics for the Turku UAS
DeepSeaSalama GAN dataset (Asadi et al., 2024). The FedAvg algorithm
is a decentralized model training system that enhances FL effectiveness and
efficiency, especially in distributed and private data settings. The algorithm
operates in the following steps and illustrated in Figure 2.
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Figure 2: Overview of the general FL framework.
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Clients download the latest global model for initialization and perform
local training using their private datasets. After training, updated model
weights are uploaded to the server for weighted aggregation, generating a
new global model. This updated model is redistributed to all clients for the
next round, repeating until convergence.

FedAvg is a machine learning algorithm that prioritizes efficient training
and privacy preservation. It reduces communication overhead by computing
weights locally during training rounds and uploading them to the cloud after
a defined interval. Only learned parameters are shared with the central server,
ensuring decentralized and private raw data. However, it lacks theoretical
convergence guarantees and can diverge in practical settings (Prashant et al.,
2023; Oudarja et al.,, 2023; Xin et al., 2023). The FeDAvg algorithm
aggregates model updates across multiple clients using the formula (1) as
following;:

Lw! (1)

N
wti=S
i=1

SIS

Where: ! * 1: the updated global model weights after aggregation in round
t + 15 w!: The local model weights of the i-th client after local training
in round t; 7;: The number of training samples held by the i-th client;
n= ;_  n;: The total number of training samples across all clients; N: The
total number of participating clients; t: The time slot for the aggregation
step, which is an integer multiplier of E (the number of local epochs before
aggregation).

The Turku UAS DeepSeaSalama GAN dataset (TDSS-G1) is a collection
of synthetic and real maritime images captured under various environmental
conditions using GANSs. Collaborators are assigned a distinct subset of the
dataset, simulating real-world FL conditions with data distribution and
privacy (Asadi et al., 2024; Kalliovaara, 2024).

This study uses YOLOv8, a more advanced version of the YOLO series, for
instance segmentation, object identification, and image classification. Unlike
other object detection algorithms, YOLOvS uses a deep convolutional neural
network to process an entire image in a single forward pass. The YOLO
algorithm segments an input image into an S x S grid, predicting predefined
bounding boxes for each grid cell. It calculates class probabilities and
confidence scores, indicating the likelihood of an object within a bounding
box. Non-Maximum Suppression (NMS) is a crucial enhancement to refine
detection accuracy.

The integration of FL with YOLOvS involves a distributed target detection
system where multiple devices collaborate to train a shared YOLOv8 model.
This method ensures localized data, reduces central storage, and enhances
privacy. The process begins with configuring the YOLOv8 model and
selecting an appropriate FL framework. Data is distributed across local
devices, with privacy-preserving mechanisms. The FL framework controls
model updates and communication protocols, improving the global model’s
accuracy and robustness. The trained models are deployed for real-time
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inference in target detection tasks, followed by performance evaluation and
optimization.

The study incorporates YOLOv8 into the FedAvg algorithm
implementation methodology, enhancing detection accuracy and efficiency.
The FedAvg framework, including design, collaborator selection, and weight
aggregation strategies, is used to ensure robust performance in maritime
object detection and classification under diverse conditions.

IMPLEMENTATION AND EXPERIMENTS

The Turku UAS DeepSeaSalama - GAN (TDSS-G1) dataset is a maritime
dataset designed for object detection and classification in marine
environments. It combines real-world maritime images with synthetic
images generated through GANs, enhancing diversity and robustness. The
dataset is annotated with multi-label information, including item categories,
bounding box coordinates, and environmental metadata, ensuring reliable
training data. It was created by extracting images from MPEG format videos
at a 100 millisecond extraction rate and 720p resolution. The distribution
of labels within the dataset is as follows: motorboats (62.1%), sailing boats
(16.8%), and seamarks (21.1%) (Asadi et al., 2024). Despite the advantages
of synthetic data augmentation, the TDSS-G1 dataset faces challenges such
as data heterogeneity, class imbalance, and adverse real-world conditions.
Variability in object size, shape, and environmental factors, including low
visibility conditions, complicates detection. Additionally, the overrepre-
sentation of larger cargo ships introduces class imbalance, negatively
impacting model accuracy. To address these issues, robust preprocessing
techniques such as adaptive contrast enhancement are used to improve
model generalization, particularly in low-visibility scenarios.

The study uses a privacy-preserving distributed training setup called
FL to train local models independently on edge devices like autonomous
maritime vessels. The devices train local models independently and share
encrypted updates with a central server, preserving sensitive data privacy. The
aggregation of local model updates is achieved using FedAvg, while efficient
data exchange is facilitated through the Message Passing Interface. Federated
training is implemented using frameworks like PyTorch, TensorFlow
Federated, and OpenMPI, with optimization techniques like adaptive
learning rate decay and weighted aggregation.

Hybrid encryption techniques, combining symmetric AES encryption for
model gradients and public-key cryptography for secure communication, are
used in the TDSS-G1 dataset. YOLOVS, a state-of-the-art object detection
model, is used for its speed and accuracy, extracting maritime features and
predicting bounding box coordinates and object classifications. Training
involves YOLO loss for bounding box regression and cross-entropy loss
for classification. The YOLOv8 model is evaluated using metrics like Mean
Average Precision (mAP), communication overhead, inference speed, and
model convergence to assess its accuracy and efficiency. However, challenges
like domain shifts between real and synthetic images persist. Domain
adaptation techniques like adversarial training improve robustness across
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different data sources. Oversampling and focal loss address class imbalance,
detecting underrepresented object classes more effectively. Weight pruning
and model compression optimize communication efficiency, reducing model
updates size without sacrificing accuracy. The experimental setup uses a
FL framework to train a global object detection model using the YOLO
architecture across multiple clients, aiming to simulate a decentralized
learning environment where clients train locally on private datasets and share
model updates with a central server.

The YOLO model is trained locally using PyTorch for a specific number
of epochs, with parameters like image size, batch size, and optimizer
configuration defined through command-line arguments. The global model
is distributed to all clients at the beginning of each federated round, with
the latest checkpoint loaded if a client has a previously trained model. Each
client fine-tunes the model using local data, and updated parameters are sent
back to the central server. The system monitors results and compiles global
performance statistics, providing insights into the model’s learning behavior
across clients.

The study uses the TDSS-G1 dataset, YOLOvS, and FL to improve real-
time maritime object detection and classification. It overcomes challenges
like data imbalance, heterogeneity, and adverse environmental conditions.
The proposed framework demonstrates decentralized, real-time surveillance
for intelligent maritime navigation systems, with FL facilitating privacy-
preserving training and communication-efficient updates. This work lays
the groundwork for future maritime monitoring systems that are privacy-
conscious and effective in complex, dynamic environments. The experimental
results are evaluated across various scenarios.

RESULTS

The study evaluates a proposed object detection model for maritime
applications using traditional training and a FL framework. The model aims
to predict bounding boxes and classify object labels in maritime environments
while maintaining data privacy. The TDSS-G1 dataset was used for training,
validation, and test sets. The model was trained for 10 epochs across four
FL clients, with parameter optimization for performance. The FL framework
allowed each client to train locally, maintaining data control and contributing
to a globally optimized model crucial in maritime operations.

Table 1: Federated learning model performance metrics on TDSS-G1 by client.

Client Train Box Train Train DFL Precision (B) Recall (B) mAP 50 (B)
Loss Classification Loss
Loss
SO 1.2065 0.94665 0.79625 0.84018 0.39328 0.41109
S1 1.2218 0.98624 0.79429 0.84378 0.39773 0.4177
S2 1.2419 0.96985 0.79737 0.83629 0.39546 0.40676

S3 1.2736 0.94589 0.79228 0.83296 0.39365 0.40833
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Table 1 assesses a FL model’s performance on the TDSS-G1 dataset,
focusing on key metrics like train box loss, train classification loss, train DFL
loss, precision, recall, and mean average precision. Client S1 demonstrated
superior accuracy and sensitivity in object detection, but the mAP 50-95
metric revealed greater variability, indicating uniform performance across
all clients. Further insights were gained from the analysis of normalized
confusion matrices (Figure 3), which reveal significant local shortcomings
in detecting the “boat” class. Recall values were notably low across clients—
11% for Client SO, 14% for Client S1, 15% for Client S2, and 13% for Client
S3—indicating that the majority of actual boat instances were missed. These
low recall values and high false negative rates indicate that each client’s local
model misses the majority of actual boat instances.

(Client s0) (Client s1)

(Client 52) (Client s3)

Figure 3: Normalized confusion matrices of local models for clients s0-s3.

The study indicates that local data limitations, including insufficient boat
examples, data bias, and labeling noise, are affecting model performance,
highlighting the need for local and global data augmentation strategies,
balanced data collection, and careful monitoring.

This performance variability across clients underscores the importance
of privacy-preserving collaborative learning in maritime applications. The
decentralized nature of FL ensures that local models can be continuously
refined using aggregated global knowledge without ever exposing raw data.
This approach mitigates the risk of data leakage in highly sensitive maritime
operations, such as vessel tracking, port security, and naval surveillance.

The YOLOv8 model shows exceptional detection of the “sailing_boat”
class, achieving near-perfect Average Precision scores across all clients. This is
crucial for maritime situational awareness and operational safety. The “boat”
class shows a decline in precision as recall increases, while the “seamark”
class achieves an AP of 0.000. These trends demonstrate the effectiveness
of the FL framework in preserving data privacy and providing insights for
targeted improvements through collaborative learning, data augmentation,
and model updates.
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Building on these findings, Figure 5 presents the Precision-Confidence
curves for each client, further validating the effectiveness of our YOLOv8
approach in a privacy-preserving FL setup. Despite variations in local
data, all clients achieve near-perfect precision for the “sailing_boat” class
across various confidence thresholds, underscoring the model’s capability
to accurately detect key maritime objects without centralized data storage.
While the curves for the “boat” and “seamark” classes indicate lower
performance, they also reveal opportunities for future enhancements via
collaborative model aggregation—ensuring that local data peculiarities are
balanced out to enhance global detection capabilities.

Precisian fecall Curve

PrecisionRecall Curve

(Client s0) (Client s1)

Precision-Recall Curve.

(Client s2) (Client s3)

Figure 4: Precision-recall curves for local models (clients s0-s3).

(Client s0) (Client s1)

(Client 52) (Client s3)

Figure 5: Precision-confidence curves for maritime object detection (Clients s0-s3).
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The YOLOv8 model, a FL framework, has been tested for maritime object
detection, showing robust performance and data privacy. It is effective in
detecting the “sailing_boat” class, crucial for maritime safety. However,
challenges persist for the “boat” and “seamark” classes due to local data
heterogeneity. Future improvements include adaptive model aggregation and
targeted data augmentation. Further research should focus on reducing local
performance variability, refining model aggregation strategies, and improving
detection capabilities for underrepresented classes.

DISCUSSION

The study tested a YOLOv8-based object detection model for maritime
applications using the TDSS-G1 dataset. It showed exceptional performance
in detecting the “sailing_boat” class, achieving near-perfect Average Precision
scores. This robust detection is crucial for maritime situational awareness
and operational safety, ensuring key objects are reliably identified while
preserving sensitive maritime data. The FL framework, despite its promising
results, faced challenges in detecting other maritime classes, particularly the
“boat” class due to data heterogeneity, imbalances in training examples,
and potential issues with data quality. However, the federated approach
safeguards sensitive information and leverages diverse local datasets to
enhance detection capabilities.

The proposed object detection model, trained using a FL framework,
has the potential to revolutionize maritime applications by improving
accuracy, efficiency, and security in real-time object detection systems. It
enhances decision-making and situational awareness in dynamic maritime
environments and enables rapid deployment across distributed networks.
Future research should focus on underrepresented classes like boats and
seamarks, adopting advanced data augmentation techniques, comprehensive
data audits, and adaptive model aggregation methods.

The study suggests that YOLOvS8, when integrated with a federated
learning framework, provides a promising and privacy-preserving solution
for maritime object detection. However, challenges with boat and seamark
detection highlight the need for further research and refinement. Addressing
data imbalances and using adaptive aggregation techniques are crucial
for improving detection capabilities and operational efficiency in real-time
maritime surveillance systems.
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