
Safety Management and Human Factors, Vol. 189, 2025, 182–188

https://doi.org/10.54941/ahfe1006584

Vocal Markers in Aviation of Workload,
Stress, Fatigue, and Sleepiness:
A Protocol Validation Study
Martina Gnerre and Federica Biassoni

Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1,
Milan, Italy

ABSTRACT

This study is composed of two parts: the first part is a systematic review, and the
second part is a protocol validation study. The systematic review aims to summarize
and consolidate evidence from existing studies on the impact of workload, stress,
fatigue, and sleepiness on speech, focusing on identifying specific vocal markers
associated with these states within the context of aviation. Using PRISMA guidelines,
we performed a comprehensive search of electronic databases, including Scopus,
ScienceDirect, PsycINFO, and Web of Science. Twenty studies met the inclusion criteria
and were analyzed to extract consistent vocal features indicative of these psychophys-
iological states in pilots and air traffic controllers (ATCs). Key findings from the
review indicate that stress and workload are associated with increased vocal intensity
and pitch, reflecting heightened sympathetic nervous system activation. Conversely,
fatigue and sleepiness manifest through reduced vocal energy, slower speech rates,
and increased pauses, indicative of diminished central nervous system activity. Mel-
frequency cepstral coefficients (MFCCs) were highlighted as reliable and versatile
indicators across all states. Building on the insights from the systematic review, the
second part of the study focuses on validating an analysis protocol designed to detect
and classify psychophysiological states in real-world aviation scenarios starting from
vocal behavior. This protocol builds on the vocal markers identified in the review
and applies structured acoustic analysis techniques using with Parselmouth, a Python
interface to Praat (Jadoul et al., 2018). Real-world audio recordings were collected
from pilots and ATCs. These scenarios included high-stress emergencies and routine
operations. The recordings were processed to extract vocal features, including pitch,
intensity, speech rate, pause duration, and MFCCs. Machine learning models were
trained and tested on these features to classify the vocal data into categories of
workload, stress, fatigue, and sleepiness. Although preliminary analyses are still
underway, the current phase focuses on feature extraction and classification strategy
development. Performance metrics will be assessed in future phases once model
training is finalized. The integration of this validated protocol into aviation safety
protocols may offer promising prospects for enhancing performance monitoring
and risk mitigation. Real-time vocal monitoring systems could provide immediate
feedback to pilots and ATCs, enabling timely interventions to address stress or fatigue
before they compromise safety. Future work will focus on testing the system in
operational settings and exploring the integration of vocal monitoring with existing
cockpit technologies and ATC systems to support real-world implementation.
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INTRODUCTION

Speech analysis has emerged as a valuable tool for assessing cognitive and
emotional states in high-stakes operational environments, including aviation
(Goguen & Linde, 1983; Greeley et al., 2013; Rakas et al., 2023). Pilots and
air traffic controllers (ATCs) frequently operate under conditions of elevated
workload, stress, fatigue, and sleepiness, all of which can significantly impact
performance and safety (Nealley & Gawron, 2015). Given that voice serves
as a primary mode of communication in aviation, vocal changes can provide
critical insights into an individual’s physiological and psychological state.
Prior research has demonstrated that stress and cognitive overload can lead
to increased pitch (F0), vocal intensity, and speech rate, while fatigue and
sleepiness are often associated with lower vocal energy, reduced speech
rate, and prolonged pauses (Chen et al., 2006; Huttunen et al., 2011).
These findings have driven interest in using non-invasive vocal monitoring
techniques to enhance real-time assessment of operator well-being in aviation
settings (Van Puyvelde et al., 2018). Advancements in machine learning
and speech processing technologies have facilitated the development of
automated systems capable of classifying psychophysiological states based
on vocal markers. Deep learning models, including convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), have shown
promising results in accurately detecting cognitive and emotional states
from speech data. However, methodological variations across studies, such
as differences in recording conditions and feature extraction techniques,
pose challenges for standardization and broader implementation. This
study builds upon previous findings by systematically reviewing the current
literature on vocal markers associated with workload, stress, fatigue, and
sleepiness in aviation context.

A REVIEW

The review followed the PRISMA guidelines, conducting a comprehensive
search across Scopus, PsycINFO, ScienceDirect, and Web of Science. Studies
were included if they examined the impact of workload, stress, fatigue, or
sleepiness on speech, employed acoustic analysis techniques, and involved
pilots or ATCs. A total of 20 studies met the inclusion criteria and were
analysed based on their methodological approaches, acoustic parameters,
and classification outcomes.

Data extraction focused on key acoustic features such as fundamental
frequency (F0), intensity, speech rate, pause duration, jitter, shimmer, and
Mel-frequency cepstral coefficients (MFCCs). The studies varied in their
methodological designs, with some conducted in real-world operational
environments, while others relied on simulations or laboratory-controlled
settings. Given the heterogeneity of data collection and analysis procedures,
a narrative synthesis was employed rather than a meta-analysis. Findings
from the review indicate that workload and stress are typically associated
with increased F0 and vocal intensity, reflecting heightened activation of the
sympathetic nervous system (Magnusdottir et al., 2022; Luig & Sontacchi,
2014). Speakers under high cognitive load also exhibit increased speech rate
and reduced variability in pitch and amplitude (Alpert & Schneider, 1988;
Huttunen et al., 2011). However, results regarding jitter and shimmer were
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inconsistent, suggesting that individual vocal responses to stress may vary.
MFCCs emerged as robust indicators across different studies, demonstrating
their potential utility in identifying workload and stress-related changes
in speech. Conversely, fatigue and sleepiness were characterized by a
decrease in vocal energy, slower speech rates, increased pause duration,
and more frequent disfluencies such as hesitations and elongations. Spectral
flattening and shifts in formant frequencies were also observed, indicating
reduced articulatory precision. These vocal changes align with physiological
models of reduced central nervous system activity during fatigue and sleep
deprivation. Machine learning approaches were employed in several studies
to classify psychophysiological states based on vocal features. Deep learning
models, such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), demonstrated high classification accuracy, often
outperforming traditional machine learning techniques like support vector
machines (SVMs) and random forests. Notably, multimodal approaches
integrating vocal features with physiological or contextual data yielded the
most reliable performance in detecting fatigue and stress states. Figure 1
illustrates the primary findings of this systematic review, emphasizing the
role of MFCC parameters as central indicators of workload, stress, fatigue,
and sleepiness in aviation. A network analysis was conducted to examine the
relationships between these psychophysiological states and specific acoustic
features. The analysis, based on statistical associations from the reviewed
studies, visualizes the interconnected nature of vocal markers rather than
isolated effects. The results support the hypothesis that stress and workload,
characterized by heightened sympathetic activation, correlate with increased
vocal intensity and pitch, whereas fatigue and sleepiness are linked to lower
vocal energy, slower articulation, and increased pauses. This visualization
provides a comprehensive framework for understanding vocal monitoring
as a non-invasive tool for assessing cognitive and physiological states in
aviation.

PROTOCOL VALIDATION STUDY

This study follows the findings of the systematic review on vocal markers
associated with workload, stress, fatigue, and sleepiness in aviation. The aim
of this protocol is to analyze speech data from two large datasets (the ATCO2
and TARTAN Aviation datasets) to validate the vocal markers identified in
the review and develop a classification system for detecting these psychophys-
iological states in ATCs and pilots. The protocol validation study was
designed to assess the effectiveness of vocal markers in detecting workload,
stress, fatigue, and sleepiness in aviation settings. Based on the systematic
review findings, we developed a structured approach for data collection,
feature extraction, and classification. At this stage, the analysis protocol
is being finalized and focuses on defining optimal acoustic features for
classification. Performance evaluation of machine learning models represents
a key objective in the next phase of the research. Once models are trained
and validated, standard performance metrics such as accuracy, precision, and
recall will be applied to assess classification quality.
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Figure 1: The diagram shows the connection between MFCC parameters and four
states: workload, stress, fatigue, and sleepiness. Each state is linked to specific vocal
changes, highlighting MFCCs’ central role as versatile indicators for psychophys-
iological monitoring. The dashed lines represent a conceptual framework illustrating
the complex interrelationships among fatigue, stress, workload, and sleepiness,
emphasizing their mutual influence without a clear, unidirectional causal pathway.

Data Collection and Sources

Two large datasets are being used. The ATCO2 dataset (Zuluaga-Gomez
et al., 2022) is serving as a large-scale corpus of real-world pilot–ATC
communications, capturing a diverse range of operational scenarios. It
encompasses both routine exchanges and high-stress emergency interactions,
providing valuable linguistic and acoustic variability. Metadata includes
timestamped communications, speaker roles (pilot or ATC), transmission
clarity, and contextual annotations to facilitate structured analysis. The
TARTAN Aviation dataset (Patrikar et al., 2024) is being developed as
a multi-modal collection of real-world airport data, aiming to enhance
research in aviation operations and automation. It integrates audio
recordings of pilot–ATC communications, high-resolution image data, and
aircraft trajectory information to offer a comprehensive view of air traffic
environments. Structured to support studies on air traffic management,
situational awareness, and human-machine interaction, the dataset is
particularly relevant for advancing automation in aviation. Metadata
includes communications, aircraft movement data, weather conditions, and
operational context to aid in detailed analyses.
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Speech Processing and Feature Extraction

Before analyzing vocal markers, the dataset is being cleaned and standardized
to ensure data quality and comparability. This includes noise filtering
to reduce background interference, speaker segmentation to distinguish
between different voices (pilots and ATCs), and amplitude and pitch
normalization to ensure uniform volume levels across recordings (following
the procedure and formula outlined in Pell et al. (2009)). Once the audio is
being preprocessed, a range of acoustic features is being extracted to capture
different aspects of speech production and communication with Parselmouth,
a Python interface to Praat (Jadoul et al., 2018) (see Table 1 for the main
acoustic parameters).

Table 1: Acoustic parameters used and their associations with these psychophys-
iological states.

Category Acoustic
Parameter

Description Associated Psychophysiological
State(s)

Prosodic
Features

Fundamental
Frequency (F0)

Changes in pitch Increased in stress & workload;
decreased in fatigue & sleepiness

Intensity Loudness of
speech

Increased in stress & workload;
decreased in fatigue & sleepiness

Speech Rate Speed of spoken
words

Increased in stress & workload;
decreased in fatigue & sleepiness

Temporal
Features

Pause Duration Length of
pauses between
speech segments

Increased in fatigue & sleepiness

Speech
Continuity

Flow of speech
without
interruptions

Reduced in fatigue & sleepiness

Spectral
Features

MFCCs Mel-Frequency
Cepstral
Coefficients,
capturing
spectral shape

Reliable indicator across all
states

Formant
Frequencies
(F1-F3)

Resonance
frequencies of
speech

Altered in stress & fatigue

Spectral Tilt Energy
distribution in
frequency bands

Flattened in fatigue & sleepiness

Voice
Quality
Features

Jitter Frequency
perturbation

Increased in workload;
inconsistent in stress

Shimmer Amplitude
perturbation

Increased in workload & fatigue

HNR
(Harmonics-to-
Noise
Ratio)

Ratio of
periodic to
aperiodic energy

Lower in fatigue & sleepiness

Continued
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Table 1: Continued

Category Acoustic
Parameter

Description Associated Psychophysiological
State(s)

Articulatory
Features

Articulation
Rate

Number of
syllables per
second

Reduced in fatigue & sleepiness

Spectral Center
of Gravity

Weighted
average
frequency in a
speech signal

Shifted under stress & workload

Experimental Protocol and Validation Strategy

To ensure the reliability and validity of the dataset, speech samples are
being independently classified by expert raters based on both operational
conditions (e.g., routine, emergency) and physiological states (e.g., stress,
fatigue). The classification process is being conducted by a panel of
psychologists specialized in human factors and aviation experts with direct
operational experience. Prior to annotation, raters are undergoing a
structured training phase to enhance inter-rater reliability and minimize
subjective bias. Annotations are performed using Praat TextGrid files,
allowing for precise segmentation and labeling of speech events (Boersma
& Van Heuven, 2001). The consistency of their classifications is being
evaluated using inter-rater reliability measures, ensuring a robust and
reproducible labeling process. Following classification, speech samples are
undergoing acoustic analysis using Parselmouth (Jadoul et al., 2018). A
refinement procedure is then being applied to optimize feature selection.
Specifically, a correlation-based approach is being employed to identify and
remove redundant or acoustically non-informative features, retaining only
those parameters that provide meaningful differentiation of workload and
physiological states. This process is enhancing the sensitivity and specificity
of speech-based assessments by ensuring that only the most diagnostically
relevant acoustic markers are being preserved.

Expected Contributions

This protocol establishes a standardized framework for acoustic analysis in
aviation communication, allowing for an objective and precise assessment
of workload, stress, fatigue, and sleepiness through speech characteristics.
The findings will support the development of non-invasive monitoring tools
aimed at improving aviation safety and operator well-being. By integrating
real-world and controlled speech datasets, this study lays the groundwork
for a scalable, real-time vocal monitoring system tailored for aviation safety
applications. Future developments will involve real-time implementation
tests in simulated and operational contexts, assessing usability and accuracy
under live conditions. In addition, the protocol will be adapted to integrate
with existing cockpit and ATC interfaces to support seamless deployment in
current aviation infrastructures.
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Ethical Considerations

All data used in this study are derived from publicly available datasets,
ensuring compliance with ethical guidelines. The analysis does not include
personally identifiable information, ensuring full anonymity of recorded
speech.
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