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ABSTRACT

In heavy manufacturing, where the production volume is low and the defect rate
must be zero, extensive human error countermeasures have been implemented.
However, the excessive number of countermeasures has placed a heavy burden on
workers, necessitating the optimization of error management strategies. This study
focuses on gathering human factor information during routine tasks by facilitating
constructive communication in the workplace. A system was designed to evaluate
this information multidimensionally, using positive words as indicators of constructive
communication.
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INTRODUCTION

Minimizing human error is essential in heavy manufacturing due to strict
quality control requirements. To address this, the following steps are
important:

1. Extract information on human factors to induce defective products.
2. Survey factors causing defective products latent in usual work.
3. Analyze multidimensional structure of the extracted factors.
4. Propose the advice-message on human error reduction to site

management departments (via consultation).

This study focuses on the second aspect by developing a method to extract
human factor information from workplace conversations. Positive words
serve as indicators of productive communication, and a system was designed
to evaluate this information effectively.

Current Research on Near-Miss Incident Factor Analysis

At present, numerous studies are being conducted on near-miss incident
factor analysis using AI, with each research effort focusing on specific
industries and fields.
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For example, in the medical field, research such as AI-driven analysis of
incident reports to identify patterns in medical errors and improve patient
safety (e.g., natural language processing (NLP) models analyzing electronic
health records) has been progressing.

In the construction industry, studies like AI-based risk assessment systems
that predict potential safety hazards on construction sites by analyzing past
accident reports and sensor data have been actively developed.

In the aviation industry, multi-layered approaches are being explored,
including AI-based crew resource management (CRM) analysis, automatic
detection of pilot errors from cockpit voice recordings, and predictive
maintenance systems that analyze aircraft performance data to prevent
mechanical failures. These studies aim to enhance flight safety by identifying
human and technical factors contributing to near-miss incidents.

If AI can accurately extract the key factors that influence the identification
of useful information for preventing nonconformities in manufacturing, it
will be possible to respond effectively to the requests that form the basis of
this study.

Human Error Factor Extraction Based on the m-SHELL Model

Existing classification methods, such as those based on the m-SHELL
model, have been developed to systematically categorize human error
factors [JAXA]. The m-SHELL model consists of six elements: Management,
Software, Hardware, Environment, Liveware (individual), and Liveware
(others). Previous studies have introduced classification tools that categorize
factors contributing to human errors [Murahashi]. Using these frameworks,
error-prone behaviors and conditions can be identified and analyzed.

Event Classification Using the SRK Model

For categorizing human errors, the SRK (Skill-Rule-Knowledge) model
proposed by Rasmussen is employed. This model classifies cognitive
processes into three levels: skill-based, rule-based, and knowledge-based
behaviors. Based on these levels, human errors can be further categorized
into fourteen distinct types.

Table 1: Category of human error and characteristics of human error.

Category of Human Error Characteristics of Human Error

Overlooking Weak Stimuli Errors occur because weak stimuli in vision,
hearing, or touch are either unnoticed or
nearly non-existent, preventing detection or
observation of objects or events.

Signal Bias Misinterpretation of signals (clues or scenes)
that serve as cues for correcting or redoing a
task, leading to hasty actions.

Frequency Bias Instead of matching characteristics as required
in a task, a person assimilates them to
familiar actions.

Continued
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Table 1: Continued

Category of Human Error Characteristics of Human Error

Incomplete Formation of
Judgment Criteria

Errors arise because the subjective judgment
criteria needed for distinguishing features in
a task have not been fully established by the
worker.

Impulsive Unsafe Behaviour Acting on impulse, prioritizing immediate
visible benefits over latent risks, leading to
undesirable consequences.

Incomplete Formation of
Repertoire

Errors due to an insufficiently developed
repertoire of necessary actions for the task.

Incomplete Feature Matching of
Finished Work

Inability to recognize subtle differences in
shape, resistance, or movement at the
completion of a task, leading to imperfect
work.

Similarity Bias Errors caused by confusing similar procedural
actions.

Task Disorder Errors due to mistakes in planning and
materializing tasks, misrecognition of task
initiation conditions, or overconfidence.

Procedure Disorder Overconfidence leads to neglecting key
considerations in task execution, resulting in
formalized or reversed procedures.

Procedure Sampling Errors due to misrecognition, confusion, or
forgetting steps while following a procedure,
often caused by overconfidence

Habitual Unsafe Behaviour Unsafe behaviours that persist despite potential
risks.

Failure to Address Tasks Forgetting to perform necessary actions.
Accidental Movement Disruptions Unintended actions occur when the body or

tools interfere with equipment
unintentionally during task execution or
movement.

METHODOLOGY

Data Collection

Two primary data sources were used:

• Incident-Related Information Sheet(I-RIS): A newly designed sheet for
analysing the factors of defect occurrences in the manufacturing industry,
specifically aimed at extracting the underlying causes of human error,
which is submitted using Google Forms.

• I-TAG (Incident Tagging): A structured system for recording the causes
of non-conformance events.
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Table 2: Input item for I-RIS.

Input Item

Worker Information (Name, Email Adress)
Date of Awareness
Workgroup
Type of Awareness(Individual, Team Company)
Category (Education, Safety, Quality)
Positive Words
Satisfaction Level (Rating from 1 to 5)

Table 3: Input item for I-TAG.

Input Item

Name
Supervisor
Date
Workgroup
Job Experience
Cause & Details
Corrective Action

From July to December 2024, we analyzed 1,000 I-RIS and 134 I-TAG
records usingm-SHELL and SRKmodels. These datasets were classified using
the m-SHELL model for error factor identification and the SRK model for
event classification.

The purpose was to develop a system that measures the quality and
quantity of information collected through these methods and provides
recommendations for future data collection.

RESULTS AND DISCUSSION

Classification Failure Rate

A classification failure rate was calculated to determine the proportion of
records that could not be categorized using either the m-SHELL or SRK
models.

Figure 1: Classification failure rate for I-TAG.
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Figure 2: Classification failure rate for I-RIS.

It was observed that I-RIS entries had a higher unclassified rate, indicating
a need for improved categorization techniques.

Considerations on Classification Failure Rate

Figure 4 and Figure 5 present the results related to unclassified data. The
findings indicate that the event classification failure rate is higher for I-TAG,
while the factor classification failure rate and the combined classification
failure rate (both factor and event) are higher for I-RIS. The purpose of
this analysis is to assess changes in workplace awareness by examining the
extracted classification results. Consequently, if a record is unclassified, it
means that it has not yet reached the stage where meaningful insights can be
derived.

Based solely on the unclassified rate, it can be inferred that the contents of
I-RIS should evolve so that a greater proportion of entries can be successfully
classified. However, I-RIS is designed to collect a broad range of daily
operational observations, making it inherently less likely to be categorized
into specific factors or events compared to I-TAG. Ultimately, improving the
classification of these broad observations into relevant factors or events is a
key aspect of enhancing workplace awareness. Therefore, it is essential that
I-RIS entries progressively become more classifiable over time.

Classification Results

Next, we will describe the specific results of the classified cases. Previously,
we compared the two methods based on the number of classified and non-
classified cases. However, since I-TAG and I-RIS target different types of
data for collection, it is somewhat natural that there would be differences
in the number of classified and non-classified cases. In this section, we will
examine the specific results to analyse the m-SHELL classification and SRK
classification.

Results and Analysis of m-SHELL Classification

The classification results based on the m-SHELL model are presented in
the table below, followed by an analysis using these results. Here, the data
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is shown as raw case numbers rather than percentages. Therefore, it is
important to consider that there is nearly tenfold difference in the number
of cases between I-RIS and I-TAG.

Figure 3: m-SHELL classification results.

Looking at the figure, the top three categories are the same for both
I-RIS and I-TAG: “Environment,” “Liveware (individual),” and “Liveware
(others).” From the perspective of proactive prevention—preventing
accidents before they occur rather than implementing countermeasures after
an accident has happened, these three categories contribute to awareness.
However, the fact that “Environment” is the most frequent category in both
datasets suggests that the level of awareness is not necessarily high. This is
because, within the m-SHELL model, “Environment” is relatively easy to
notice.

A high level of awareness would be indicated by a balanced distribution
of classifications across “Management,” “Software,” “Hardware,”
“Environment,” “Liveware (individual),” and “Liveware (others).”
Examining the I-RIS results, “Management” appears as the next most
frequent category after the top three, which is a positive trend. However, as
previously mentioned, the overwhelming focus on “Environment” and the
lack of balance among other categories suggest that awareness is still not at
a high level.

Compared to I-TAG, where “Management” is scarce and the distribution
across other categories is even more unbalanced, I-RIS demonstrates a better
trend. The broader range of awareness recorded in I-RIS suggests that it may
be easier to analyze changes in awareness over time in the future.

Results and Analysis of SRK Classification

Next, we present the classification results based on the SRKmodel in the table
below and analyze them accordingly. As with the m-SHELL classification, the
results are shown as raw case numbers rather than percentages.
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Figure 4: Frequency of occurrence of extracted factors based on SRK classification.

Looking at Figure 7 above, the types of errors that are more likely to be
classified show similar trends in both I-TAG and I-RIS. However, focusing
on the differences, I-RIS has more cases classified under “Habitual Unsafe
Behavior” and “Failure to Address Tasks” compared to I-TAG. Notably, the
number of cases under “Habitual Unsafe Behavior” is significantly high.

“Habitual Unsafe Behavior” is defined as “unsafe behavior that persists
despite potential risks.” From a proactive prevention perspective, a high
number of such cases suggest a good level of awareness. However, the large
number of cases classified under “Failure to Address Tasks” does not indicate
a high level of awareness. This is because “Failure to Address Tasks” is more
relevant from a reactive rather than proactive perspective.

• Failure to Address Tasks: Forgetting to perform necessary actions.

This category represents awareness of errors after they have already
occurred, rather than before, which means it is not directly related to
proactive prevention. In other words, while errors are recognized after they
happen, there is insufficient awareness of potential risks during routine work.

From this perspective, the frequency of cases classified under “Overlooking
Weak Stimuli” is significant.

• Overlooking Weak Stimuli: Errors occur because weak stimuli in vision,
hearing, or touch are either unnoticed or nearly nonexistent, preventing
detection or observation of objects or events.

A high frequency of cases in this category suggests a heightened awareness
of potential hazards in routine tasks. Awareness of “Overlooking Weak
Stimuli” involves recognizing subtle risks that are often overlooked in daily
operations, making it an essential factor in proactive accident prevention.

Conclusion on the Current State of Awareness Capability Based on
the Analysis

This section presents the conclusion regarding the current state of awareness
capability in heavy industry A.
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The first conclusion is:
} The collection process in I-RIS must be improved to achieve a higher

success rate in m-SHELL and SRK classification.
Currently, approximately 20% of the data collected remains unclassified.

This means that 20% of the data does not contribute to either proactive
prevention or even reactive prevention. While it is commendable that I-
RIS, which collects a broader range of observations, achieves a slightly
higher classification rate than I-TAG, the fact that 20% remains unclassified
indicates that a significant portion of the data fails to clear the first stage in
this evaluation method for assessing awareness changes.

The presence of unclassified data itself suggests a low level of awareness
capability. Therefore, the first step should be to ensure that 100% of I-RIS
submissions can be classified. Only after achieving this can, we proceed to
the second stage, which involves analyzing changes in awareness based on
classification results.

The second conclusion, drawn from the content of successfully classified
cases, is:

} The fact that classification results from I-RIS and I-TAG are largely
similar indicates a low level of awareness capability.

This is because I-RIS and I-TAG collect fundamentally different types of
data. I-RIS is designed to capture a wide range of daily observations, while
I-TAG is used to collect cause-related information about nonconformities,
meaning it primarily records incidents where errors have already occurred.

In other words, I-TAG is inherently designed for reactive prevention
(preventing recurrence), whereas I-RIS is intended to facilitate proactive
prevention (preventing incidents before they occur). However, the current
results show that I-RIS is also primarily collecting information related to
recurrence prevention, which is not ideal given the goal of preventing errors
before they occur.

At present, the level of awareness capability is such that people can only
recognize hazards after an error has occurred. The goal should be to raise
awareness to the point where hazards can be identified in routine operations
before an error happens.

Of course, as noted in the analysis, there were some indications that I-
RIS was capturing awareness related to proactive prevention more effectively
than I-TAG. However, the overall trend shows that the level of awareness
derived from I-RIS is still largely like that from I-TAG, which highlights a
key issue.

These two conclusions summarize the current state of awareness capability
at heavy industry A, as revealed through this study.

As stated at the beginning, in manufacturing industries like aircraft
production, where the number of manufactured units is small and the defect
rate must be zero, proactive prevention is particularly critical compared to
recurrence prevention. Therefore, improving workers’ awareness capability
remains a key challenge.
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CONCLUSION

This study developed a system to evaluate awareness capability through
classification models. Over time, tracking changes in classification rates
can support workplace feedback and guide improvements in proactive
error prevention. The system offers a promising foundation for long-term
workplace safety and quality management.
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