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ABSTRACT

In ergonomics, worker movement on site is an important factor in assessing the risk
of musculoskeletal disorders, among other factors. Several commercial markerless
motion capture systems that can be used for this purpose are available, mostly based
on monocular or multi RGB (THEIA system)/RGB-D cameras (MS Kinect system).
Hybrid systems combining computer vision and Inertial Measurement Units (IMUs)
have been introduced, such as the KIMEA (1 RGB-D + 4 IMUs) and the KIMEA Cloud
(1 RGB + 4 IMUs) solutions. Although previous works analysed the accuracy of some
of these systems, the relevance of coupling computer vision and IMU has not been
studied. Hence, we tested the performance of these systems in evaluating bimanual
handling tasks, with partial occlusions of the body in the images. The THEIA system
exhibits an average of 11.1◦ error for all the joints, with larger Root Mean Square errors
on the wrists and the shoulder (>14◦ error). KIMEA Cloud with IMU obtained similar
global RMS error (10.3◦ to 10.9◦ depending on the viewpoint), but with better results
for the wrists (3.9◦ to 4.3◦). The impact of coupling RGB-D images and IMU data is even
bigger: the RMS error of the Kinect decreased from 17.2◦ down to 8.9◦ when adding the
IMUs information (KIMEA system). This difference is even bigger for the wrists: 28.3◦

to 38.5◦ for the Kinect, and 3.8◦ to 4◦ for KIMEA. These results confirm the advantage
of introducing a few IMU sensors, especially for the wrists which are badly tracked in
the images.
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INTRODUCTION

In ergonomics, considering a worker’s posture and movement is one of the
important information to assess the risks of development of musculoskeletal
disorders in the workplace. Exposure to biomechanical risk factors,
including force, posture, and repetition, along with individual factors
affecting the worker, increases the risk of work-related musculoskeletal
disorders (WMSDs). Self-assessment, direct measurement, and observational
techniques (Li and Buckle, 1999) are common methods to assess this risk.
Observational methods, such as the RULA method (McAtamney and Corlett,
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1993), involve directly evaluating the performance of the worker at the
workstation. The accuracy and validity of the results obtained using these
observational methods directly depend on the input information (Fagarasanu
and Kumar, 2002). This information can be delivered using two main types
of measurement systems: either based on wearable sensors (mainly inertial
measurement units IMU nowadays), or based on cameras and computer
vision algorithms. On the one hand, some commercial IMU-based systems
exhibit an excellent accuracy, comparable to classical optoelectronic motion
capture, but are difficult to implement in some real work situations (Li
and Buckle, 1999) due to many practical factors, including discomfort, and
because they are subject to drift, especially when exposed to magnetic field
disturbance (Yunus et al., 2021). On the other hand, camera-based methods
benefit from recent advances in computer vision and machine learning, to
design markerless systems based on either depth (Microsoft Kinect Azure DK)
or RGB cameras (Pavllo et al., 2019). The THEIA system (THEIA) applied
this approach to multiple calibrated RGB cameras to enhance the accuracy
of markerless human pose estimation. However, camera-based systems can
suffer from partial occlusions, and have difficulties to accurately track the
movement of small body parts, such as the hands, leading to less accurate
human pose estimation.

Several studies have already evaluated these motion capture systems in the
field of ergonomics (Menolotto et al., 2020; Humadi et al., 2021). Most
of these studies only evaluated systems based on former Kinect systems
(Plantard et al., 2017a; Manghisi et al., 2017), no longer commercialized
today. More recently, a few studies have attempted to validate the use of
monocular (Yuan and Zhou, 2023; Li et al., 2020; Nayak and Kim, 2021)
or multiple RGB cameras (Kim et al., 2021) for postural assessment.

Recently, hybrid systems, such as the KIMEA (Moovency) or VIMU (Adjel
et al., 2023) systems, proposed to fuse computer vision and sparse IMU
data, to benefit from the advantages of both measurements. For example, the
KIMEA (monocular RGB-D) and KIMEA Cloud (monocular RGB) systems
propose to place IMUs in gloves to enhance accuracy of the wrist joint
angle estimation. Indeed, wrists are frequently hidden in manipulation tasks,
especially in cluttered environments. Moreover, the size of the wrist in the
image is very small, which makes it difficult for computer vision systems to
accurately reconstruct wrist joint angles. Hence, when coupling sparse IMUs
on the hand and the forearm, the assumption is that it should compensate
the inaccurate wrist joint angles of computer vision only systems. Although
previous works analyzed the accuracy of some of the sensor-based or camera-
based systems, the relevance of coupling computer vision and IMU has not
been studied yet. In this paper, we propose to test the performance of these
hybrid systems when evaluating bimanual handling tasks, including partial
occlusions of the body in the images.

MATERIALS AND METHODS

In this study, we tested several commercial solutions. KIMEA is based on the
native Microsoft Kinect pose estimation software, with additional IMUs on
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the forearms and the hands. Hence, comparing KIMEA and Kinect enabled us
to evaluate the impact of using these IMUs. KIMEA cloud is based on a two-
steps process: 2D pose estimation (Chen et al., 2017) used as input of a 3D
estimation method inspired from (Jena et al., 2021). This is also completed
by IMUs placed on the wrists and the forearms. The THEIA multicamera
system is supposed to overperform all the monocular systems, as it relies on
several points of view and a large training dataset. Comparing THEIA and
KIMEA Cloud enabled us to evaluate the impact of adding IMUs.

Experimental Set-Up

The following experimental set up was approved by the Operational
Committee for the Evaluation of Legal and Ethical Risks (COERLE) No.
2021-32. 12 participants, 3 women and 9 men (age: 32.6±10 years, height:
1.73±0.079 m, mass: 76±16 kg) participated in this study. Each participant
was equipped with the Xsens inertial motion capture system (Roetenberg
et al., 2013), considered as the reference system for our experiment (Robert-
Lachaine et al., 2017; Kim et al., 2021). An anthropometric measurement
and system calibration phase was carried out for each participant, as
recommended by the supplier.

Three Orbbec depth cameras (Orbbec) were installed around the
participant. The resulting depth images were used to run the Kinect (with
Microsoft Kinect Azure DK) and KIMEA systems, with different viewpoints:
front, side and behind the participant.

Six RGB cameras were also placed around the subject to provide RGB
images required for the THEIA and KIMEA Cloud systems. The THEIA
system used data from the 6 camera viewpoints to assess the participant’s
movement. As KIMEA Cloud is a monocular system, it has been tested
with the 6 different viewpoints. Details about the depth and RGB camera
placement is given in Figure 1.

Figure 1: Left) 6 RGB (A1-A6) and 3 RGB-D (B1-B3) camera placements tested in this
experiment. Right) picture of the bimanual handling task.

For KIMEA and KIMEA Cloud, four IMUs (integrated into specific gloves)
were placed to the midpoint between the styloids, and the dorsal surface of
the hand, at level of the third metacarpal bone, for each arm.

The participants simulated bimanual handling tasks: removing an empty
cardboard box (size: 39 × 29.5 × 19cm, weight: 250g) from a three-tier
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shelf and transferring it to another one. This task was repeated five times
consecutively with no waiting period in-between. The two shelves were
positioned at 45◦ to the subject, with three different heights: 51 cm, 89
cm and 127 cm from the floor. The average task duration was 25 seconds.
The order of shelves was predetermined and remained consistent across
subjects. Pick and place order for bimanual handling is illustrated in Figure 1.
The execution of the task generated external occlusion (with the box) and
self-occlusion according to the different depth and RGB camera viewpoints.

One of the most popular WMSD risk assessment method is RULA
(McAtamney and Corlett, 1993), based on joint angles (mainly flexions). We
consequently evaluated the impact of joint angle estimation errors on this
type of score. To compute the RULA score, each joint angle was assigned
a value according to a range of predefined angles. For example, the arm
score varied from 1 to 4 if shoulder flexion was between [−20◦; 20◦],
<−20◦or between [20◦; 45◦], between [45◦; 90◦], or >90◦ respectively. The
same type of threshold was applied to the other joint angles. The scores for
each joint were grouped into the A Score, for arms, forearms and wrists, and
the B Score, for the neck, trunk and legs. An A score was calculated for the
joint of the left upper limb and the right limb respectively. Other elements,
such as “Muscle use” (repetitiveness) and “Force score” (external loads) were
included in these A and B scores, to give the C Scores (for the left and right
upper limbs), and the D Score (for neck, trunk and legs). These additional
items were entered manually and set to the same value whatever the motion
estimation system was used. Each C Score was combined with the D Score
to provide the Final RULA Score for the left and the right parts of the body,
ranging from 1 “acceptable” to 7 “immediate changes required”. These left
and right Final Scores led to a RULA Action Level Score summarized in four
levels of intervention (from “acceptable posture” to “workstation requiring
immediate changes”).

Statistics

We compared the joint angles and corresponding RULA scores (RULA Action
Level, left and right Final, left and right C and D scores) estimated with each
evaluated system and the Xsens reference one, for each subject. The root
mean square error (RMSE) was used to quantify this difference (Cao et al.,
2017; Plantard et al., 2017b; Kim et al., 2021; Lahkar et al., 2022; Bertram
et al., 2023). To compare our results to (Yuan and Zhou, 2023), we also
computed the mean absolute error (MAE). MAEevalj is the absolute value of

the error between the joint angle θevalj of the evaluated system eval for the

joint angle j, and the results θ
ref
j of the reference system ref for the joint angle

j, computed as follows:

MAEevalj

(
θevalj , θ refj

)
=

∑n
i = 1

∣∣∣θevalj (i)− θ
ref
j (i)

∣∣∣
n

(1)

We computed the normalized mean absolute error (nMAE) to facilitate
comparison of the joint angles with different ranges of motion. We
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normalized the MAEevalj of each joint j by the range of motion measured
by the reference system:

nMAEevalj =

MAEevalj

(
θevalj , θ refj

)
max

(
θ
ref
j

)
−min

(
θ
ref
j

) (2)

The correlation between the results of each evaluated system and the
reference one was also calculated for the joint angles. A Kolmogorov-Smirnov
test was used to verify the normality of the error distribution for these
analyses. Since the distributions did not follow a normal distribution for
this experiment, Spearman’s correlation coefficient (ρ) was used. Finally, we
compared the sensitivity of the different systems with the sensitivity of the
reference one, by computing the number of times the RULA scores changed
during the task. Moreover, we analyzed the Proportion agreement index (Po)
of the RULA score (no difference between the RULA score obtained with the
reference system, and the one based on the tested systems), for each system
and camera placement.

RESULTS

Table 1 shows the RMSE in degrees for the 4 tested systems, for depth and
RGB cameras placed in front of the subject, as generally recommended. These
results show that theRMSE of the various calculated joint flexion angles were
close to 10◦, expect for Kinect (RMSE: 17.2◦). The RMSE of the shoulder
and elbow joints were lower for the THEIA system compared to the other
evaluated systems.

Table 1: RMSE ± standard deviation expressed in degrees [◦] for the work task
performed during experimentation with frontal camera placement and for
the main joint flexion angles required for RULA. Results in bold highlight the
smallest errors, per joint flexion angle.

KIMEA B1 THEIA Kinect B1 KIMEA
Cloud A3

KIMEA
Cloud A4

Back 3.7 ± 1.0 4.3 ± 1.4 3.7 ± 1.0 5.1 ± 1.7 6.1 ± 1.1
Neck 5.8 ± 2.0 9.7 ± 2.8 5.9 ± 2.0 6.8 ± 1.4 6.3 ± 1.7
Left shoulder 15.2 ± 4.8 14.2 ± 5.4 15.2 ± 4.8 16.5 ± 3.4 16.6 ± 3.2
Right shoulder 16.0 ± 5.1 14.2 ± 5.6 15.9 ± 5.1 18.4 ± 3.0 15.5 ± 2.6
Left elbow 11.9 ± 2.3 9.7 ± 3.3 14.7 ± 4.3 15.6 ± 2.7 15.6 ± 4.1
Right elbow 11.2 ± 2.7 9.4 ± 2.7 15.7 ± 5.4 16.7 ± 2.7 14.1 ± 1.7
Left wrist 3.8 ± 2.7 14.1 ± 3.7 38.5 ±19.2 4.3 ± 3.1 4.3 ± 3.1
Right wrist 4.0 ± 2.4 13.0 ± 3.9 28.3 ± 5.2 4.0 ± 2.2 3.9 ± 2.2
Overall 8.9 ± 2.9 11.1 ± 3.6 17.2 ± 4.6 10.9 ± 2.5 10.3 ± 2.5

Table 2 shows the MAE in degrees and nMAE in percent for the 4 tested
systems, for depth and RGB cameras placed in front of the subject. Kinect
exhibited larger errors compared to the other systems, with an average 14.3◦

(23.8%) error. This error increased up to 32.8◦ (61.9%) for the wrist. THEIA
obtained less accurate wrist joint angles (10.9◦, 20.6%) compared to KIMEA
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(3.1◦) and KIMEA Cloud (3.1◦). For these systems, large errors occurring for
joints with large movements, such as the shoulders or elbows joints, lead to
a lower percentage of error (nMAE).

Table 2:MAE ± standard deviation expressed in degrees [◦] (nMAE expressed in
percent [%]) when using the frontal camera placement and for the main joint
flexion angles required for RULA. Results in bold highlight the smallest errors,
per joint flexion angle.

KIMEA B1 THEIA Kinect B1 KIMEA
Cloud A3

KIMEA
Cloud A4

Back 3.0±0.9 (5.3) 3.6±1.3 (6.4) 3.0±0.9 (5.3) 3.8±1.2 (6.8) 4.8±0.9 (8.5)
Neck 4.7±1.7

(26.0)
8.0±2.5
(44.5)

4.7±1.7
(26.2)

4.8±0.8
(26.8)

4.7±1.2
(26.4)

Left shoulder 13.1±4.7
(12.9)

12.0±5.2
(11.8)

13.2±4.7
(12.9)

13.0±2.7
(12.7)

13.0±2.7
(12.7)

Right
shoulder

13.4±5.3
(13.1)

11.7±5.5
(11.6)

13.3±5.2
(13.2)

14.6±2.5
(14.3)

12.1±2.4
(12.0)

Left elbow 9.6±2.2 (9.1) 7.9±3.0 (7.5) 12.1±3.8
(11.6)

12.3±2.1
(11.6)

12.2±4.0
(11.1)

Right elbow 9.3±2.3 (8.7) 7.8±2.4 (7.3) 12.9±5.2
(12.1)

12.4±2.1
(11.7)

10.8±1.3
(10.2)

Left wrist 3.1±2.4 (5.8) 10.9±3.5
(20.6)

32.8±19.9
(61.9)

3.3±2.4 (6.3) 3.3±2.4 (6.3)

Right wrist 3.1±1.9 (6.5) 10.1±3.3
(21.0)

22.6±4.9
(47.1)

3.1±1.7 (6.5) 3.1±1.7 (6.4)

Overall 7.4±2.7
(10.9)

9.0±3.3
(16.3)

14.3±4.5
(23.8)

8.4±1.9
(12.1)

8.0±2.1
(11.8)

Table 3 shows the correlations between estimated and reference joint
angles, for the main joints. These results support the hypothesis that wrist
angles are difficult to estimate with a computer vision approach. For example,
the Kinect B1 exhibited very low correlation for the two wrist angles (0.14
and 0.18 for the left and right wrist flexion respectively). However, hybrid
systems with IMUs benefit from additional information for the wrists, leading
to higher correlation (≥ 0.88). The neck flexion seemed also difficult to
estimate with computer vision methods, especially for KIMEA Cloud system
(correlations between 0.34 and 0.39).

Table 3: Spearman’s correlation coefficient (ρ) for frontal camera placement and for
the main joint flexion angles required for RULA. Results in bold highlight the
highest correlations, per joint flexion angle.

KIMEA B1 THEIA Kinect B1 KIMEA
Cloud A3

KIMEA
Cloud A4

Back 0.92 ± 0.03 0.96 ± 0.02 0.92 ± 0.03 0.87 ± 0.05 0.77 ± 0.07
Neck 0.59 ± 0.20 0.51 ± 0.21 0.59 ± 0.20 0.34 ± 0.22 0.39 ± 0.21
Left shoulder 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.85 ± 0.05 0.85 ± 0.06
Right shoulder 0.95 ± 0.03 0.96 ± 0.02 0.95 ± 0.02 0.81 ± 0.05 0.86 ± 0.03
Left elbow 0.90 ± 0.04 0.94 ± 0.03 0.88 ± 0.05 0.86 ± 0.05 0.88 ± 0.06
Right elbow 0.93 ± 0.03 0.95 ± 0.02 0.89 ± 0.05 0.85 ± 0.05 0.89 ± 0.05

Continued
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Table 3: Continued

KIMEA B1 THEIA Kinect B1 KIMEA
Cloud A3

KIMEA
Cloud A4

Left wrist 0.88 ± 0.28 0.55 ± 0.18 0.14 ± 0.14 0.88 ± 0.23 0.88 ± 0.24
Right wrist 0.91 ± 0.11 0.60 ± 0.14 0.18 ± 0.16 0.90 ± 0.14 0.90 ± 0.13
Overall 0.88 ± 0.09 0.80 ± 0.08 0.69 ± 0.08 0.80 ± 0.11 0.80 ± 0.11

Table 4 shows the nMAE of the joint angles depending on the camera
placements. The results show that the camera placement had an important
impact on the joint angles estimation. Greater errors occurred for camera
placed at the back and the side, for both KIMEA and Kinect (KIMEA back
position: 17.4%, side position: 14.0%; Kinect back position: 33.8%, side
position: 29.4%). The KIMEA Cloud system seemed less impacted by the
camera placement with nMAE values ranging between 11.8% and 14.6%.

Table 4: The nMAE in precent [%] for the main joint flexion angles required for
RULA, for different camera placements. Results in bold highlight the camera
placement with the lowest errors, per joint flexion angle.

KIMEA THEIA Kinect KIMEA Cloud

B1 B2 B3 B1 B2 B3 A1 A2 A3 A4 A5 A6

Back 5 6 9 6 5 6 9 8 10 7 9 12 15
Neck 26 37 54 44 26 39 56 34 39 27 26 38 38
Left shoulder 13 14 18 12 19 14 18 13 18 13 13 11 14
Right shoulder 13 20 20 12 13 20 20 16 12 14 12 11 15
Left elbow 9 9 13 8 12 14 17 11 13 12 12 12 10
Right elbow 9 13 13 7 12 16 19 11 9 12 10 11 11
Left wrist 6 7 6 21 62 65 72 6 6 6 6 6 6
Right wrist 7 7 6 21 47 62 60 7 7 6 6 6 6
Overall 11 14 17 16 24 29 34 13 14 12 12 14 15

Table 5 shows the proportion agreement index (Po) of the global RULA
scores obtained with the different tested systems and camera placements.
Kinect exhibited the worst performance, with a RULA Action Level Po
between 71 % to 74%, according to the camera placement. KIMEA obtained
highest Po values, ranging from 80% to 87% depending on the camera
position. KIMEA Cloud also exhibited Po scores that depend on the camera
placement, between 80 % and 89%, with the highest scores when cameras
were placed in front. For KIMEA and KIMEA Cloud, the C Scores (upper-
limbs) decreased down to 55% and 66% respectively when the camera was
placed in the back of the subject. THEIA exhibits high Po score for the RULA
Action Level (86%) and for the C Scores (72–73%).
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Table 5: Proportion agreement index (Po) in percent [%] for RULA scores, for the
various motion capture systems and camera placements. Results in bold
highlight the camera placement with the higher agreement for each system
and for each RULA sub-score.

KIMEA THEIA Kinect KIMEA Cloud

B1 B2 B3 B1 B2 B3 A1 A2 A3 A4 A5 A6

RULA Action Level 87 80 81 86 74 71 74 80 81 87 89 85 84
Final RULA Left 80 76 71 70 67 60 59 72 65 74 76 73 69
Final RULA Right 82 72 71 71 72 59 61 66 72 72 77 71 68
Left C score 72 69 56 73 56 50 42 66 58 70 71 72 67
Right C score 72 60 55 72 60 45 42 60 71 68 73 72 66
D score 74 63 51 62 73 63 51 63 59 69 70 57 53

DISCUSSIONS AND CONCLUSION

Joint angles accuracy presented in this paper are consistent with those
reported by previous works based on RGB-D cameras (Yuan and Zhou,
2023; Kim et al., 2021; Plantard et al., 2017b). These previous studies
evaluated the former Kinect V2 depth camera, but the overall performance
using Kinect Azure DK (used in this work), were similar to former versions
(Bertram et al., 2023).

(Yuan and Zhou, 2023) reported RMSE of 12.9◦ and a MAE of 9.4◦, for
all the joint angles, when using a monocular RGB system. In our work,RMSE
for KIMEA Cloud was 10.6◦, and MAE was 8.2◦. (Cao et al., 2017) reported
smaller RMSE (8.3 ◦) when using an OpenPose system with 3 cameras, but it
was mostly tested on static poses without occlusions. The joint angles errors
with THEIA were consistent with those reported for different movements
(Lahkar et al., 2022).

Globally, the joint angles obtained with the tested systems exhibited good
correlation (ρ ≥ 0.82) with the reference system for back, shoulder and elbow
flexion angles. For neck joint angles, the correlation was weak to moderate
(between 0.34 and 0.59). This is partially explained by a small variation of
these angles in the studied movements, resulting in a larger normalized error
(nMAE between 26% to 44.5%). As expected, THEIA and Kinect suffered
from more important errors and lower correlation for the wrist joint angles
(THEIA: MAE = 10.5◦ ± 3.4, ρ ≤ 0.60; Kinect: MAE = 27.7◦ ± 12.4, ρ ≤
0.18), compared to systems embedding IMUs (MAE ≤ 3.3◦, ρ ≥ 0.88).
This result supports the hypothesis that current computer vision algorithms
cannot accurately estimate movements of small body parts with large range
of motions, and high risk of occlusion, such as the hands. In working tasks,
hands are often used, and errors in estimating their motion may lead to
unreliable postural assessments. Moreover, WMSDs affecting the forearm,
the wrist and the hand are the first to second most common trouble affecting
workers whatever the sector of activity (de Costa et al., 2015).

We obtained a proportion agreement (Po) for the RULA Action Level
Scores of 0.83, 0.81, 0.73 and 0.84 for KIMEA, THEIA, Kinect and KIMEA
Cloud, respectively. Results showed relatively few variations according to
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camera placement, with Po ranging from 0.80 to 0.87 for KIMEA, 0.71
to 0.74 for Kinect, and 0.81 to 0.89 for KIMEA Cloud. These results are
consistent with previous works (Yuan and Zhou, 2023; Kim et al., 2021).
Other works reported slightly better RULA estimations using Kinect V2
(Plantard et al., 2017b), but with different methodology and experimental
design.

As expected, our results show that the camera placement affected the
performance of computer vision methods. We reported lower joint angle
errors when the camera was placed in front of the subject (nMAE for KIMEA:
10.9%, Kinect: 23.8% and KIMEA Cloud: 12.0%). The impact of the
camera placement seemed more limited for the KIMEA Cloud system, with
nMAE ranging from 11.8% to 14.6% for all camera placements. The most
significant joint angle errors were found when the camera was placed on the
back for the KIMEA (nMAE: 17.4%) and Kinect (nMAE: 33.8%). Neck joint
error was over 50% when the depth camera was positioned on the back of
the subject. The evaluated tasks involved leaning forward movements, which
caused head occlusion with this camera placement.

Optoelectronic systems were not used in this work, as the infrared cameras
and reflective markers lead to important interferences with depth cameras
(Özsoy et al., 2022; Jo et al., 2022). Hence, in this work, we used the Xsens
system as a reference system instead, similarly to other previous works (Kim
et al., 2021). The measurement error of the Xsens was estimated around
2.8◦ for handling tasks (Robert-Lachaine et al., 2017), but other authors
reported 14.5◦ errors with different experimental set-ups (Benjaminse et al.,
2020). Additionally, these inertial systems may drift over long measurement
sequences (Plamondon et al., 2007; Kim and Nussbaum, 2013). Further
studies would be necessary to evaluate the impact of using Xsens as a
reference system in that case.

Even if we designed the protocol to mimic real work conditions, the
experiment was carried out in a laboratory condition. Further works would
also be necessary to evaluate these systems on real working conditions. This
is a complex task as it is almost impossible to control the test condition
(especially the camera placement) and to ensure that a reference system
would deliver actual reliable values. This is especially true for tasks involving
wrist motions, that might be responsible for disorders, such as carpal tunnel
syndrome (Malchaire et al., 1996). It is also important to notice that the
various measurement systems rely on custom biomechanical models, which
may differ from the ISB recommendations (Wu et al., 2005). The placement
and number of anatomical landmarks provided by the different systems for
calculating joint angles may also differ. We used the method described by
(Kim et al., 2021) to limit the impact of these model differences. However, it
would be interesting to add a more accurate calibration phase to approximate
anatomical reference points (Robert-Lachaine et al., 2017; Xu et al., 2017)
and decrease this potential bias.

To summarize, the different motion capture systems based on computer
vision enabled a correct evaluation of the risk of WMSDs, especially when
using the RULA assessment method. However, systems based on vision only
suffered from high joint angle estimation errors, especially for the wrist
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joint angles. The results showed that hybrid systems consistently provided
more accurate RULA scores, regardless of the camera’s placement relative
to the worker. Such evaluations contribute to our understanding of the
capabilities and limitations of various kinematic data collection systems,
thereby informing their practical implementation in ergonomic evaluation
practices. The results are relevant to ergonomists who want simple, easy-
to-deploy tools for on-site accurate postural assessment with a minimal
setup.
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Özsoy, U. Yıldırım, Y. Karaşin, S. Şekerci, R. Süzen, L. B. (2022) Reliability and

agreement of azure kinect and kinect v2 depth sensors in the shoulder joint range
of motion estimation. Journal of Shoulder and Elbow Surgery Volume 31.

Pavllo, D. Feichtenhofer, C. Grangier, D. Auli, M. (2019) 3d human pose estimation
in video with temporal convolutions and semi-supervised training, proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition CVPR.

Plamondon, A. Delisle, A. Larue, C. Brouillette, D. McFadden, D. Desjardins,
P. Larivière, C. (2007) Evaluation of a hybrid system for three-dimensional
measurement of trunk posture in motion. Applied Ergonomics Volume 38.

Plantard, P. H. Shum, H. P. Multon, F. (2017a). Filtered pose graph for efficient kinect
pose reconstruction. Multimedia Tools and Applications Volume 76.

Plantard, P. Shum, H. P. Le Pierres, A. S. Multon, F. (2017b) Validation of an
ergonomic assessment method using kinect data in real workplace conditions.
Applied ergonomics Volume 65.

Roetenberg D. Luinge H. Slycke P. (2013) Xsens MVN: Full 6dof human motion
tracking using miniature inertial sensors. Xsens Technologies.

Robert-Lachaine, X. Mecheri, H. Larue, C. Plamondon, A. (2017) Validation of
inertial measurement units with an optoelectronic system for wholebody motion
analysis. Medical & biological engineering & computing Volume 55.



76 Belabzioui et al.

THEIA website: https://www.theiamarkerless.com/.
Wu, G., Van der Helm, F. C., Veeger, H. D., Makhsous, M., Van Roy, P., Anglin,

C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X., et al. (2005) ISB
recommendation on definitions of joint coordinate systems of various joints for
the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand.
Journal of biomechanics Volume 38.

Xu, X. Robertson, M. Chen, K. B. hua Lin, J. McGorry, R. W. (2017) Using
the microsoft kinect™ to assess 3-D shoulder kinematics during computer use.
Applied Ergonomics Volume 65.

Yuan, H. Zhou, Y. (2023) Ergonomic assessment based on monocular RGB camera
in elderly care by a new multi-person 3D pose estimation technique (ROMP).
International Journal of Industrial Ergonomics Volume 95.

Yunus, M. N. H. Jaafar, M. H. Mohamed, A. S. A. Azraai, N. Z. Hossain, M. S.
(2021) Implementation of kinetic and kinematic variables in ergonomic risk
assessment using motion capture simulation: A review. International Journal of
Environmental Research and Public Health Volume 18.


	Impact of Introducing Sparse Inertial Measurement Units in Computer Vision-Based Motion Capture Systems for Ergonomic Postural Assessment
	INTRODUCTION
	MATERIALS AND METHODS
	Experimental Set-Up
	Statistics

	RESULTS
	DISCUSSIONS AND CONCLUSION
	ACKNOWLEDGMENT


