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ABSTRACT

Preference is an important indicator of architectural design quality and human well-
being. Current interior space design mainly relies on the designer’s subjective
judgment and lacks an objective basis. This study aims to quantify event-related
potential (ERP) features of architectural interior preference, and examine whether we
can infer human preference from single-trial ERP using machine learning. Thirty-six
university students participated in an experiment where they viewed architectural
interior images and rated them based on their preferences. Significant voltage
differences were observed in particular channels (mainly in Oz, O2, Pz, Fp1, Fp2,
T7) when participants viewed liked versus disliked images. Source localization
indicated that liked images primarily activated the left frontal cortex, while disliked
images predominantly activated the left occipital lobe. The within-subject models
significantly outperformed the chance level, while the cross-subject models did not
show significant results. Also, we found that some visual features can be decoded
better than other features by EEG. These findings shed new light on understanding
the difference in ERP of interior preference and illustrate the potential for developing
a brain-computer interface (BCI) for rapid design evaluation.

Keywords: Architectural preference, EEG (electroencephalography), ERP (event-related
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INTRODUCTION

Architectural interior not only serves as functional space but also significantly
impacts the psychological and emotional experiences of individuals.
Therefore, evaluating human preference for interior is of great importance,
as it helps elevate the quality of certain interior designs and satisfies users’
needs. Previous research has uncovered brain activity patterns associated
with various aesthetic tasks. For example, an fMRI study found that the
architectural feature “Fascination” was associated with neural activity in
the right lingual gyrus (Coburn et al., 2020). Another study found that
architecture with curvilinear features activated the anterior cingulate cortex
in beauty judgments (Vartanian et al., 2013). Although significant progress
has been made in understanding how the brain processes various stimuli,
the specific neural activity patterns associated with architectural interior
preference are still not well comprehended.
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Among the neuroimaging techniques, EEG has a high temporal resolution,
which allows for capturing real-time changes. Also, EEG is more portable and
easier to use in daily scenes compared to other neuroimaging methods. Due
to these advantages, EEG is widely used as an objective way to study human
mental state in built environment studies (Bower et al., 2019) and preference
studies (Jacobsen and Höfel, 2001). In recent years, with the development
of machine learning, researchers have begun to train EEG-based classifiers,
aiming to unlock the potential of brain-computer interfaces (BCIs) that are of
more application value (Akter et al., 2022; Lawhern et al., 2018). Compared
to long-termmeasurement, event-related potential (ERP, often < 2s) is a better
way to evaluate various designs quickly. However, it remains to be tested
whether ERP can predict human interior preference.

Based on the considerations mentioned above, the main objectives of
this study are: 1) To describe the EEG characteristics of the liked and
disliked architecture stimuli, offering insight into the neural difference
between preferred and non-preferred conditions. 2) To explore the possibility
of developing predictive models for architectural interior preference using
ERP, exploring the possibility of BCI for rapid architectural design
evaluation. Through this research, we aim to offer theoretical foundations
and technological tools for evaluating human preference for the built
environment.

EXPERIMENT

Materials

The experimental materials for this study consisted of 500 living room
interior images generated by DALL-E 3 (“DALL·E 3,” n.d.). We chose
to use AI-generated images instead of photos or renderers due to the
following reasons: 1) Diversity: AI-generated images offer a vast number of
novel designs. 2) Unfamiliarity: Since the images are newly generated, they
ensure that participants have no prior exposure, eliminating familiarity bias.
3) Controllability: It can ensure that the size and resolution of the image are
consistent and the quality is relatively controllable.

We computed six features that may affect architectural preference:
(1) average hue, (2) average brightness, (3) average saturation,
(4) complexity, (5) sky ratio, and (6) greenery ratio. The complexity
was calculated as the ratio of the edge pixels by the Canny edge detection
algorithm. The sky ratio and greenery ratio were extracted by the InternImage
segmentation model (Wang et al., 2023) pre-trained on the Ade20k dataset
(Zhou et al., 2017). We divided the images into binary categories. For
average hue, greater than 70 was classified as cool, less than or equal was
classified as warm. For the other five features, those greater than the median
value were classified as high, and the left were classified as low. Figure 1
displays two examples.
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Participants

Thirty-eight university students participated in the experiment (19 males and
19 females). The participants’ average age is 22.63. 16 participants major
in architecture and other visual arts-related fields. All participants reported
no color blindness or weakness, nor history of neurological or psychiatric
disorders.

Figure 1: Experiment material examples.

Experimental Procedure

The experiment environment is displayed in Figure 2A. The study used the
Neoroelectrics Enobio 32-channel EEG device, which employs AgCl dry
electrodes, with a sampling rate of 500Hz and a bandwidth of 0–125Hz. The
32 electrodes were placed following the 10–10 system in the places shown
in Figure 2B. A reference electrode was placed on the right earlobe. The
experiment was conducted in an electromagnetic and sound-shielding room
to prevent potential electromagnetic and noise interference. The experimental
stimuli were presented on a 24-inch LED screen with a refresh rate of 144 Hz.

First, participants viewed 20 images to familiarize themselves with the
experimental procedure. During each trial, the computer interface was set
to gray. After a 1500–2000 ms inter-trial interval (ITI), during which a black
cross appeared on the screen, the image was presented for 2000 ms, and
participants rated the image using the keyboard. Since aesthetic experiences
typically diminish with repeated viewings, this study adopted a single-trial
design, where each image was presented only once. After familiarizing with
the procedure, participants viewed 480 images in random order, with a break
of at least 1 minute after every 60 images.

The experiment procedure is shown in Figure 2C. This experiment was
approved by the ethics committee (approval number: THU-04-2024-15).
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Figure 2: Experiment design. (A) Photo of a participant engaging in the experiment.
(B) 32 channels location of the enobio32 EEG device (the channels in purple)
(Neuroelectrics, 2022). (C) Experimental procedure.

RESULTS

All the analysis was done using Python 3.11.5 andMNE 1.6.0.We preprocess
the data: 50 Hz noise filter, re-referencing to average, interpolating the bad
electrodes, independent components analysis (ICA), removing eye movement
artifacts, 0.2–10 Hz bandpass filter, baseline correction from –0.5 to 0s,
removing trials that exceed 80uV, resampling to 50 Hz. Two participants’
data were removed due to too few remaining trials (<100), so the valid sample
size is thirty-six.

Temporal Statistical Analysis

We conductedWilcoxon signed-rank test on the averaged EEG voltage values
for the liked and disliked stimuli at each time point and each channel. Figure 3
shows the r value (Figure 3A) and p value (Figure 3B) of the Wilcoxon
signed-rank test on the EEG voltage values for liked and disliked stimuli.
After 100 ms, many channels exhibit significant differences between the
liked and disliked stimuli. In some of the occipital and parietal regions (e.g.,
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Oz, O2, Pz), the liked stimuli exhibit significantly stronger positive voltage
than for disliked stimuli. Conversely, in some of the frontal and temporal
regions (e.g., Fp1, Fp2, T7) the liked stimuli exhibit significantly stronger
negative voltage than for disliked stimuli. We further plotted the waveforms
of the channels with more than 30% of the time points having p-values
< 0.05 in the 0–1000ms window (Figure 3C).

Figure 3: (A) r value and (B) p value of Wilcoxon signed-rank test on the EEG voltage
values for liked and disliked stimuli. (C) Waveforms of six channels that more than
30% time points exhibit significant differences in the 0–1000 ms window. The line is
the mean of all the subjects, and the shaded areas is the 95% confidence intervals.

Source Localization Analysis

To investigate which brain regions were activated by interior preferences,
we conducted source localization analysis. Source localization can infer the
origin of EEG signals using inverse problem algorithms, helping to identify
the active brain regions. We determine the time window based on the results
of the previous Wilcoxon signed-rank test (100–900 ms). We utilized the
sLORETA (standardized low-resolution brain electromagnetic tomography)
algorithm to determine the activated brain regions for each participant during
the liked and disliked trials. The results (Figure 4) showed that in the liked
trials, the left frontal cortex was mainly activated, whereas in the disliked
trials, the left occipital lobe was mainly activated.
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Figure 4: Source localization results.

Machine Learning Decoding Model

We tried to build within-subject and cross-subject machine learning models
to see if we could predict the participants’ preferences for interior images
based on their EEG. For the within-subject decoding, we used the classic
logistic regression classifier for binary classification. The input is the voltage
value of a trial in all the channels (50 time points * 32 channels, reshaped to
one-dimensional vector). Stratified 5-fold cross-validation, was employed to
evaluate the model. We also tried to use EEGNet (Lawhern et al., 2018) to
train a within-subject classification model. When using EEGNet, we used
a 1–40 Hz bandpass filter and downsampled the data to 128Hz during
preprocessing, and four-fold cross-validationwas used. Formodel evaluation,
we use the area under the receiver operating characteristic curve (hereafter
referred to as AUC). For comparison, we shuffled the labels of the data and
conducted model training, evaluation and testing in the same manner. Then,
we performed pairedWilcoxon signed rank tests to compare the performance
of the model on the original data and on the shuffled data.

Figure 5 shows that the within-subject classification model performed
significantly better on the original data than the label-shuffled data on the
AUC metric (Wilcoxon signed-rank test on the logistic regression results:
W = 145, n = 36, p = 0.002, r = 0.492; Wilcoxon signed-rank test on
the EEGNet results: W = 143, n = 36, p = 0.002, r = 0.498). This indicates
that EEG signals can reflect preferences to a certain extent. However, we
also observed considerable individual differences. Some participants’ AUC
exceeded 65%, while others had relatively lower performance. We also find
that the logistic regression model using only 12 channels’ data (Fp1, Fp2,
AF4, FC5, FC6, C3, T7, CP5, Pz, P8, Oz, O2) performed significantly better
on the original data than the label-shuffled data (Wilcoxon signed-rank test:
W = 159, n = 36, p = 0.005, r = 0.456). This indicates that 12 channels
EEG signals contain information related to interior preferences.

For the cross-subject model, we also tested logistic regression and EEGNet,
employing leave-one-subject-out cross-validation. The binary classification
model on the original data and the label-shuffled data did not show a
significant difference on the AUC metric, indicating that the ERP related to
interior preferences of different subjects shows some inconsistency.
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Figure 5: Within-subject classification results using all the channels.

Decoding Architectural Features

Since interior preference may be related to specific architectural features,
we also explored the predictive power of EEG for different architectural
features. We trained within-subject logistic regression binary classifiers for
each feature and compared their performance. The results (Figure 6) indicate
that saturation, lightness, complexity and sky ratio can be decoded by EEG
signal to some extent, while hue and greenery ratio can not.

Given that architectural features and preferences may be correlated
to a certain extent and thus affect EEG, we also conducted Pearson
correlation analysis of the six architectural features and preferences. The
result (Figure 7) shows that average lightness and sky ratio are significantly
positively correlated to preference, while average hue, average saturation
and complexity are significantly negatively correlated to preference. Among
them, the four features with high significance related to preference for
Pearson can also be better classified using EEG (saturation, lightness,
complexity and sky ratio, p < 0.001). This may indicate that the ability
of EEG to decode preference may originate from some basic visual
features.
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Figure 6: Within subject classification results on 6 features.

Figure 7: Heatmap of Pearson correlation coefficients between features.
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DISCUSSION

This study explored the ERP characteristics elicited by preferred and non-
preferred architectural interior images. In general, the findings of this study
support the notion that, compared to disliked interiors, liked interiors
produce higher levels of visual and cognitive processing within 100–900 ms.
We observed strong late positive potential (LPP) in the occipital and parietal
areas after 300 ms, and previous studies find that high arousal stimuli elicit
LPP (Olofsson et al., 2008). This may suggest that pleasant interior images
induce stronger emotional arousal.

Our experiment demonstrates the potential of EEG in estimating human
preference toward architectural interiors. The within-subject classification
model performed significantly better than the chance level, and some
participants’ AUC exceeded 65%. It is important to note that the
classification performance was highly dependent on the characteristics of the
image dataset. In some studies, stimuli with extreme differences are often used
in order to elicit greater physiological differences and thus achieve higher
classification accuracy. However, a previous review has pointed out that if
a small number of extreme stimuli are used, certain features may interfere
with the experimental results (Olofsson et al., 2008). Therefore, we believe
the diversity of our stimuli can avoid this problem.

This study uses images as stimuli, which provide a controlled environment
for quick assessment. Future studies could employ VR or video stimuli to
enhance immersion and capture the dynamic aspects of interior spaces more
effectively. Also, current non-invasive dry electrode EEG technology may not
be very reliable, and the combination of EEG equipment and VR still faces
many challenges. Future research should address these problems and improve
the applicability of BCI in architecture design.

CONCLUSION

This study provides a foundational understanding of the neural mechanisms
underlying architectural interior preferences and examines the possibility of
developing a BCI for design evaluation. The key findings are as follows:

1) For the ERP patterns when participants viewed interiors they liked
compared to those they disliked, significant differences in voltage were
observed in certain channels (mainlyOz,O2, Pz, Fp1, Fp2, T7). The liked
images mainly activated the left frontal lobe, indicating higher cognitive
engagement.

2) For single-trial decoding of preference, the within-subject binary
classification model performed significantly better than random chance,
demonstrating the potential of predicting interior preferences from EEG
signals.

3) Some visual features (average saturation, average lightness, complexity
and sky ratio) can be decoded better than some other features by EEG.

Although the application of EEG in design evaluation is still immature,
preferences and some visual features are already partly measurable. This
study tested a novel possibility to decode users’ preferences through their
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EEG signals. This approach allows for the iterative development of designs
that more closely align with user preferences. Future research should focus
on enhancing the ecological validity of these findings by incorporating
more immersive stimuli with advanced neuroimaging tools and addressing
individual differences.
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