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ABSTRACT

Lip-reading recognition is a technology that converts the visual information of a
speaker’s lip movements into corresponding textual content. It has broad applications
in fields such as national defense, healthcare, and public safety, and holds significant
academic value. In recent years, with the rapid advancement of deep learning, lip-
reading technology has made notable progress, achieving numerous innovative and
breakthrough results. This paper proposes a novel lip-reading recognition architecture
that integrates a Residual Network (ResNet) with a Temporal Convolutional Network
(TCN), and introduces a simple yet highly effective attention mechanism—Simple
Attention Module (SimAM). The key components of the proposed approach are
as follows: (1) Feature Extraction: ResNet is employed to extract spatial features
from lip images. By introducing residual connections into conventional convolutional
neural networks, ResNet effectively alleviates information loss and mitigates the
vanishing gradient problem, allowing for more efficient utilization of deep-layer
features. (2) SimAM: Traditional attention mechanisms often focus on enhancing
features along either the spatial or channel dimension, limiting their ability to
learn complex, multi-dimensional attention weights, and typically incurring high
computational costs. To address these limitations, SimAM is incorporated. It
leverages a spatial suppression mechanism to compute attention weights for each
neuron, requiring no additional parameters, while simultaneously attending to
both spatial and channel dimensions. (3) Temporal Modeling: TCN is adopted for
sequence modeling, applying convolutional operations along the temporal axis.
Unlike recurrent networks, TCN enables parallel computation, captures long-range
dependencies effectively, and offers a simpler architecture with faster training
and greater stability—particularly well-suited for large-scale lip-reading datasets.
To validate the effectiveness of the proposed model, experiments were conducted
on the largest publicly available lip-reading dataset, LRW, which features diverse
pronunciation scenarios and a large number of samples. Comparative experiments
with various state-of-the-art architectures demonstrate that the proposed model
achieves significant improvements in both recognition accuracy and computational
efficiency.
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INTRODUCTION

Human-Computer Interaction (HCI) (Card et al., 1983) is one of the
most cutting-edge research fields in computer science. It refers to the
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process of information exchange between humans and computers through
a specific interaction language and method to accomplish defined tasks.
With the advancement of various innovative technologies, HCI has evolved
from humans adapting to computers to computers adapting to humans,
with speech interaction technologies being the most mature. In quiet
environments, Audio Speech Recognition (ASR) (Jelinek, 1976) has achieved
remarkable performance, reaching accuracy rates of 95%or higher. However,
in acoustically complex environments, such as crowded public spaces
or negotiation meetings with intense discussions, background noise and
overlapping conversations significantly interfere with audio input, reducing
recognition accuracy and failing to meet desired outcomes. This makes
the effective utilization of visual speech information increasingly critical.
Automatic Lip Reading (ALR), also known as Visual Speech Recognition
(VSR) (Petajan, 1984), involves extracting visual information from a
speaker’s lip movements and converting it into human-readable text. With
the emergence of deep learning and advancements in traditional methods, lip
reading technology has made significant strides and demonstrated immense
potential for further development.

The development of lip-reading recognition technology has gone through
several important stages, with the proposal of various networks and models.
In the early stages, researchers primarily used Hidden Markov Models
(HMM) and Gaussian Mixture Models (GMM) to model the relationship
between lip movements and speech. With the rise of deep learning,
Convolutional Neural Networks (CNN) became widely used for feature
extraction. Yue et al. (2015) proposed an end-to-end lip-reading recognition
system based on deep convolutional networks, which significantly advanced
the field. To better handle temporal sequence features, Graves et al. (2013)
introduced Long Short-Term Memory (LSTM) networks and applied them
to lip reading recognition. Subsequently, Tran et al. (2015) proposed 3D
Convolutional Neural Networks (3D-CNN), which capture both spatial
and temporal information when processing video sequences, improving
the model’s ability to model lip movement variations. In recent years, the
Transformer architecture proposed by Vaswani et al. (2017), with its self-
attention mechanism, effectively captures long-range dependencies. Zhou
et al. (2020) applied this architecture to lip reading recognition, further
improving recognition accuracy and robustness. In the domain of multimodal
learning, Duan et al. (2019) introduced a deep neural network architecture
that fuses visual information with audio signals. By combining CNN,
LSTM, and acoustic models, they enhanced the performance of lip-reading
recognition in complex environments. The introduction of these methods
has significantly advanced lip-reading technology, leading to substantial
breakthroughs in both accuracy and application domains. In summary, our
main contributions are:

• We introduce a lightweight Simple Attention Module to compute
attention weights, accelerating the weight calculation process and
enhancing the flexibility of computing attention weights across both
channel and spatial dimensions.
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• We compare and evaluate the proposedmodel against several well-known
networks, achieving further improvements in accuracy.

ARCHITECTURE DESIGN

The lip-reading recognition system architecture in this paper primarily
consists of an input module, a feature extraction module, and an output
module. The input module processes video or image sequences. The feature
extraction approach is divided into image feature extraction and temporal
feature modeling. Image feature extraction mainly utilizes Convolutional
Neural Networks (CNNs) (LeCun et al., 1998), along with popular models
such as ResNet (He et al., 2016), VGG (Simonyan and Zisserman, 2015),
MobileNet (Howard et al., 2017), and ShuffleNet (Zhang et al., 2018).
Temporal feature modeling primarily employs Recurrent Neural Networks
(RNN) (Bai et al., 2018), Long Short-Term Memory Networks (LSTM)
(Li et al., 2015), Gated Recurrent Units (GRU) (Chung et al., 2014),
and Temporal Convolutional Networks (TCN) (Bai et al., 2018). In this
work, we propose a lip-reading recognition system that combines Residual
Networks (ResNet) with Temporal Convolutional Networks (TCN), while
also incorporating the Simple AttentionModule (SimAM) (Yang et al., 2021).
The overall architecture is shown in Figure 1.

Figure 1: The architecture of a lip-reading recognition system.

Image feature extraction in this system is performed using ResNet, whose
core innovation lies in the introduction of residual modules. By incorporating
“skip connections” (identity mapping) that directly link inputs to outputs,
ResNet effectively mitigates issues such as vanishing or exploding gradients
in deep neural networks. This design allows for stacking significantly deeper
layers, such as ResNet-18 and ResNet-50. The structure of ResNet is
composed of multiple residual blocks, each containing convolutional layers,
batch normalization layers, and ReLU activation functions, with the skip
connections preserving the input features. ResNet has been widely applied in
tasks like image classification, object detection, and semantic segmentation,
profoundly influencing the design of deep learning models and becoming a
foundational model for modern deep networks.
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SimAM is a lightweight attention mechanism module whose core idea
is to model the saliency of neuron activations, simulating the response
characteristics of activation functions in neuroscience. This approach
enhances the representational power of Convolutional Neural Networks
(CNNs) in a simple, efficient, and parameter-free manner. In visual
neuroscience, the neurons that carry the most information are typically those
that exhibit distinct firing patterns compared to surrounding neurons. These
active neurons are also capable of suppressing the activity of neighboring
neurons, giving them higher priority. To identify these neurons, the following
energy function is defined for each neuron:
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and the other neurons within the same channel. The labels for yt and y0 are
binary (e.g., 1 and −1), and regularization is applied to obtain:
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Theoretically, each channel has M energy functions, and the iterative
computation can be computationally expensive. Therefore, a fast closed-form
solution for ωt and bt is introduced:
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its surrounding neurons, making it more important for visual processing.
Therefore, the importance of each neuron can be calculated as 1

e∗t
. Based

on the principle that attention modulation typically manifests as scaling the
neuron responses, a scaling operator is used to refine the features:

X̃ = sigmoid(
1
E
)�X, (6)

here, E represents the aggregation of e∗t across all channels and spatial
dimensions, and the sigmoid function ensures that the output is confined to
the range [0, 1], without affecting the relative importance of each neuron.

The structure of SimAM is based on calculating attention scores for each
pixel within a channel. It uses a simple mathematical formula to measure
the distinguishability between pixels and the background, thereby enhancing
key features while suppressing irrelevant information. Compared to feature
refinement that focuses only on the channel or spatial dimensions, SimAM
improves the flexibility of computing attention weights that span both
channel and spatial variations. Since SimAM does not require additional
learnable parameters, it is easy to integrate into various network architectures
and has achieved notable performance improvements in tasks such as image
classification and object detection.

Temporal feature modeling in this system is achieved using TCN, a
convolutional neural network architecture designed for processing sequential
data. The core idea of TCN combines causal convolution and dilated
convolution. Causal convolution ensures the temporal causality of the
sequence, while dilated convolution expands the receptive field, enabling
the effective capture of long-term dependencies. Compared to traditional
RNN-based approaches (such as LSTM and GRU), TCN offers advantages
such as higher parallel computation efficiency and more stable gradients.
Its architecture consists of multiple stacked convolutional layers, integrated
with residual connections to mitigate gradient vanishing issues, along with
pooling and normalization operations. TCN has demonstrated exceptional
performance in tasks such as time series forecasting, speech recognition, and
natural language processing, making it a powerful alternative in the field of
sequence modeling.

EXPERIMENTAL ANALYSIS

In this study, we use the LRW dataset (Chung et al., 2017). The LRW
dataset was introduced by the Visual Geometry Group at the University of
Oxford in 2016 and is sourced from BBC broadcast programs rather than
recordings made by volunteers or experimental subjects. It contains speech
from hundreds of different speakers, consisting of 500 distinct words. All
videos are 29 frames in length (1.16 seconds), with the word appearing in
the middle of the video. The dataset includes over 550,000 speech instances,
fulfilling the data volume requirements for deep learning to some extent.
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Table 1: The Top-1 and Top-5 accuracy rates for ResNet-18
combined with various attention modules.

Method Top-1 Accuracy(%) Top-5 Accuracy(%)

ResNet-18 70.33% 89.58%
ResNet-18+SE 71.19% 90.21%
ResNet-18+CBAM 71.24% 90.04%
ResNet-18+ECA 70.71% 89.85%
ResNet-18+SimAM 71.31% 89.88%

During the preprocessing phase, we use the Dlib library’s face detector
and the 68-point landmark model to identify the lip region. Landmark
information is used to extract facial key points, such as those of the lips and
eyes, from each frame, returning the (x, y) coordinates for each key point.
Missing frames in the landmark data are interpolated, and after processing
the video frame by frame, the key points for all frames are saved. Based on the
key point data, several feature points around the mouth (e.g., points 48 to 67)
are selected to define the boundaries of the lips. The cropped lip region is then
normalized to a fixed size of 96×96 and converted to grayscale. This process
results in a standardized Region of Interest (ROI) for the lips. Before training,
we also combine ResNet-18 with SimAM and other attention modules for
comparison, and calculate the Top-1 and Top-5 accuracy on ImageNet-1000,
as shown in Table 1.

Figure 2: Loss and accuracy curves.
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The training phase was conducted on a laboratory server equipped with a
GeForce RTX 3090 Ti. The AdamW optimizer was used, with a batch size
of 96 and 100 epochs. The initial learning rate was set to 0.0003. The entire
training process was based on the LRW dataset, followed by final validation.
The resulting loss curve and accuracy curve, as shown in the figure below,
were compared with the scenario where the SimAM module was not added.

Figure 2 shows the loss curves before and after adding the attention
module on the LRW dataset and displays the accuracy curves under the
same conditions. A comparison reveals a significant reduction in loss and an
increase in accuracy, with the loss decreasing by 0.12 and accuracy improving
by 2%. Additionally, it is clear that increasing the number of epochs has a
significant impact on the results.

Table 2: Compare with advanced models on LRW datasets. The author, architecture
composition and accuracy are indicated respectively.

Authors Method Accuracy(%)

Chung et al. CNN 61.10
Chung et al. CNN+LSTM+attention 76.20
Stafylakis et al. 3D-CNN+ResNet-34+Bi-

LSTM
83.00

Petridis et al. 3D-CNN+ResNet-34+Bi-
GRU

83.39

Courtney et al. Res-Bi-Conv-LSTM 85.20
Weng et al. 3D-CNN+Bi-LSTM 84.11
Wang et al. 3D-CNN+Bi-Conv-

LSTM
83.34

Zhao et al. 3D-CNN+ResNet-18+Bi-
GRU

84.41

Xu et al. 3D-CNN+P3D-
ResNet50+TCN

84.80

Martinez et al. 3D-CNN+ResNet-
18+MS-TCN

85.30

Kim et al. 3D-CNN+ResNet-18+Bi-
GRU+VAM

85.40

Ma et al. 3D-CNN+ResNet-
18+MS-TCN+KD

88.50

Kim et al. 3D-CNN+ResNet-
18+MS-TCN+MH-
VAM

88.50

Koumoaroulis et al. 3D-CNN+EfficientNetV2
+Transformer+TCN 89.52

Ryumin et al. AVCRFormer 89.57
Ours 89.63

Subsequently, we evaluated various studies using different deep learning
networks for lip reading recognition and compared their results with ours,
as shown in Table 2. The comparison indicates that our approach indeed
enhances the accuracy of lip-reading recognition.
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CONCLUSION

Lip-reading recognition is a crucial technology in the field of intelligent
human-computer interaction and has demonstrated broad application value
across various domains. This study builds on a lip-reading architecture
that combines ResNet and TCN, further integrating the lightweight SimAM
module. Significant advancements have been achieved in both model design
and performance optimization. Specifically, we leveraged the efficiency and
effectiveness of the SimAM module in capturing critical features across
channel and spatial dimensions to enhance ResNet’s ability to extract spatial
features from lip images. Meanwhile, TCN contributed to improved training
efficiency and prediction performance by leveraging parallel computation
and its capacity to capture long-term dependencies in sequence modeling.
Experimental results on the LRW dataset demonstrate that the proposed
model achieves improvements in both accuracy and efficiency compared
to existing methods, validating its effectiveness and practical value. In the
future, we aim to conduct further research to enhance the model’s speed and
accuracy.
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