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ABSTRACT

Background: Movement smoothness is a pivotal parameter for evaluating the quality
of human motion, reflecting its fluidity and continuity. This parameter holds significant
importance in fields such as industrial ergonomics, medical rehabilitation and sports
performance optimization. Metrics such as Spectral Arc-Length (SPARC) and Log
of Dimensionless Jerk (LDLJ) are commonly used to quantify smoothness, but the
impact of signal segmentation on these measurements remains underexplored.
This study investigates how segmenting motion signals influences smoothness
assessments in different movement tasks.

Objective: The primary aim of this research is to assess the effect of signal
segmentation on movement smoothness, specifically comparing smoothness values
derived from whole signal analysis versus segmented signal analysis. The study also
examines how these effects differ across various movement tasks, such as walking
and upper limb motion. Methods: two different synthetic signals were analyzed.
Synthetic signals, modelled as sinusoidal and Gaussian profiles, simulate idealized
movement behaviours, allowing for controlled examination of the segmentation
effect.

Results: The analysis reveals that signal segmentation significantly affects
smoothness measurements. In periodic movements, segmenting the signal
into individual steps leads to different smoothness values compared to analyzing the
entire movement as a continuous cycle. These findings underscore that smoothness
is context-dependent and influenced by the segmentation approach.

Conclusions: This study demonstrates that movement smoothness is not only an
inherent property of the movement itself, but it is also a measure influenced by
signal processing techniques. The results highlight the importance of standardized
segmentation methods for reliable smoothness evaluations.

Keywords: Human movement smoothness, Human systems integration, Systems engineering,
Systems modeling language

INTRODUCTION

The study of movement smoothness is valuable in various fields, including
sports performance optimization, rehabilitation, clinical assessments, and
human-machine interaction in industrial contexts (Balasubramanian et al.,
2009; Chandler et al., 2021a; Digo et al., 2023). For instance, in
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rehabilitation, smoothness metrics can help clinicians track motor recovery
and tailor interventions, while in ergonomics, these metrics improve
workstation design by analyzing movement efficiency.

Over the years, several quantitative metrics have been developed to assess
smoothness, with Spectral Arc-Length (SPARC) and Log Dimensionless Jerk
(LDLJ) emerging as reliable and widely adopted methods (Balasubramanian
et al., 2012; Refai et al., 2021). Both metrics require pre-processing of the
recorded motion signals, typically involving signal segmentation to extract
the relevant movement portion. However, the lack of standardization in
segmentation techniques across different tasks and contexts can affect the
accuracy and comparability of smoothness measurements. This is particularly
true in repetitive or rhythmic movements, where segmentation decisions—
whether to analyze whole signals, individual cycles, or smaller sub-cycles—
can produce substantially different smoothness values (Balasubramanian
et al., 2015).

Several studies have explored segmentation techniques when evaluating
smoothness in different tasks. For instance, studies on walking tasks have
estimated smoothness using SPARC and LDL]J by applying event-based
segmentation (Chandler et al., 2021a; Figueiredo et al., 2020; Pinto
et al., 2019). A different approach was proposed by do Vale Garcia
et al. (2021), who applied a windowing method to reduce the effects of
long and continuous data without following event-based segmentation. In
contrast, other research projects have investigated walking tasks without
introducing any segmentation processes (Beck et al., 2018; Belluscio et al.,
2019). Similarly, numerous works have examined movement smoothness in
upper limb tasks, often without standardized signal processing techniques.
For example, Saes and colleagues focused on velocity signals obtained
during reach-to-grasp tasks, where signal segments were identified as the
entire forward movement (Saes et al., 2021). Other studies on upper limb
tasks analyzed unconstrained activities of daily living, processing data by
considering the entire movement of reaching or object manipulation (Engdahl
and Gates, 2019; Rincon Montes et al., 2014). Finally, Bayle et al. (2023)
applied segmentation by separating the forward phase from the backward
phase in point-to-point movements. Despite the growing use of SPARC and
LDL]J, the effect of signal segmentation on smoothness evaluation remains
underexplored. This study addresses this gap by investigating how different
segmentation approaches impact smoothness assessments. Specifically, we
compare smoothness values derived from whole signal analysis versus
segmented signal analysis using both synthetic and experimental motion data.

The aim of this work is to investigate the effect of signal segmentation on
movement smoothness estimation. Specifically, smoothness values derived
from whole signals are compared with those obtained through different
segmented signal analysis.

METHODS
SPARC and LDLJ

This work focuses on two metrics exploited for the evaluation of movement
smoothness: SPARC and LDL] (Balasubramanian et al., 2012). SPARC metric
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is shown in Equation (1), where index #sparc represents the smoothness
index. S(w) is the Fast Fourier Transform (FFT) of the signal profile in time
s(t), normalized with respect to its maximum and . is the cut-off frequency.
Equation (2) describes the LDL]J index n;prj formula, where a(z) is the
acceleration profile, apgax corresponds to the maximum acceleration peak
between #; and #,, which are the start and end instants of the movement.
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Metrics algorithms were implemented in Matlab® (MathWorks, USA) and
applied to all signals.

da (1)
dt

Synthetic Signals

The first type of synthetic signal studied is characterized by a Gaussian
trend or a combination of Gaussians, as it is frequently chosen in the
state of the art for validating the implemented procedures (Balasubramanian
et al., 2012; Mohamed Refai et al., 2021b). Moreover, a signal with a
Gaussian trend can be associated with certain simple human movements
involving the upper limbs, for instance the velocity profile of a point-to-point
movement (Hogan and Sternad, 2009). Indeed, pick and place gestures, often
repetitive, are frequently assimilable to Gaussian or sinusoidal profiles. Since
the state of the art suggests different signal post-processing in the presence of
rhythmic signals, the analysis of sinusoidal signals is introduced to evaluate
the proposed approach.

For both types of synthetic signals, different frequencies were tested, within
a range from 0.22 Hz to 1.27 Hz. In the case of the sinusoidal signal, this
corresponds to its fundamental frequency. For the Gaussian signal, it defines
the repetition rate of a complete Gaussian segment. This frequency range
was selected to match the range observed in experimental tests (Antonelli
et al., 2023). The signal amplitude was set to a unitary value. The initial
analysis focused on the frequency influence on smoothness. Then, the study
progressed to evaluating the influence of other parameters.

To investigate smoothness in the context of periodic signals, the sinusoidal
signal is used as a reference for comparison with other versions. Specifically,
the sinusoidal signal is compared with a z/2 phase-shifted sine profile
maintaining the same amplitude and the fundamental frequency, as well as
with a sine wave phase-shifted by z. Finally, a further analysis involved
both the sinusoidal and Gaussian signals. The influence of segmentation on
movement smoothness (1/10 amplitude of the carrier) was evaluated in the
presence of noise. More specifically, a sine wave with a smaller amplitude
(1/10 amplitude of the carrier) and a frequency of 10 Hz was added to the
original signals. Before the implementation of the SPARC metric, average
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values of the signals were subtracted to simulate the removal of the DC
frequency component in experimental post-processing.

Signals Segmentation

As mentioned before, previous works have suggested guideline to implement
the signal processing for the movement smoothness evaluation. The first
step suggested by authors consists in identifying signals segments based on
the recognition of interest events (event-base segmentation). Segmentation
process was performed for both types of synthetic signals presented: Gaussian
and sinusoidal profiles. Each initial signal included eight repeated movement
cycles. Smoothness evaluation was conducted on the entire signal (S;.;), on
each complete cycle of the signal (S), and on each half of all cycles
(Shalf cycle)- Figure 1 shows an example of the segmentation technique applied
to a sinusoidal signal on the left and a Gaussian profile on the right. For
each signal, results include a unique smoothness value for the S;,; data,
eight smoothness values for the eight segments S, and sixteen smoothness
values in the case of Sf ycle- The analysis aimed to compare three different
segmentation approaches within a single task.
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Figure 1: Segments identification for a sinusoidal (left) and a Gaussian signal (right).

RESULTS

The comparison of movement smoothness values obtained by implementing
SPARC and LDL]J metrics on signals processed by different segmentations
are here reported. The evaluation was performed on two types of synthetic
signals: a Gaussian profile (case G) and a sinusoidal (case S). As mentioned
before, all profiles include eight complete cycles of the reference movement.
Results are shown in Table 1. Values showed in Table 1 summarize results
obtained for the 0.6 Hz frequency signals. Table 1 include values obtained
applying SPARC and LDL]J to synthetic signals, case G on the left and case
S on the right. Three different segmentations are summarized in three rows:
Stot, Scycle and Sbalfcycle‘
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Table 1: Movement smoothness values for both signals: sinusoidal signal
(case S) and Gaussian signal (case G).

Case G SPARC LDL] Case S SPARC LDL]
Stot ~9.92 —6.68 Stot —4.67 —7.14
Seycle ~2.50 ~2.52 Seycle ~2.66 ~2.98
Shalfeydle  —2:93 ~1.14 Shalfeycle  —4.94 ~1.56

However, smoothness evaluation was conducted for various frequencies
within the range mentioned above. All obtained results are summarized
in Figure 2. Proposed graphs show values including both gaussian and
sinusoidal profiles for all frequencies analyzed in this work, in the left and
right column respectively. Trends obtained through the application of Sy,
segmentation are shown in blue, S, in red and ;¢ ¢yl in yellow. Results
highlight discrepancies in the application of the different segmentations
across all analyzed signal types. In general, S;,; results in a worse value than
the others. An additional consideration concerns the difference between Sy,
and Spai¢ cycle- Results obtained using SPARC are better for S, compared
t0 Spalf cycles Whereas the opposite trend is observed with LDL].
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Figure 2: Influence of segmentation on movement smoothness for different
frequencies. Values for gaussian signals on the left and for sinusoidal signals on the
right.

A further analysis has focused on comparing smoothness evaluation on
sinusoidal signals with different phase-shifts. In particular, Table 2 included
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movement smoothness values obtained for the #/2 and 7 phase-shifted
sinusoidal signal.

Table 2: Movement smoothness values for the z/2 and = phase-shifted sinusoidal

signal.
CaseS + 7 /2 SPARC LDL] Case S+ 7 SPARC LDL]J
Stot —4.72 —7.14 Stot —4.69 —-7.14
Seycle —4.61 —-2.97 Seyele —2.66 -2.95
Shalf cycle —4.23 —1.58 Shalf cycle -—4.95 —1.60

Regarding the S;,; segmentation, SPARC and LDL] results show minimal
differences among the three analyzed versions of the sinusoidal signal.
Moreover, S.. and Spuf cyele show very similar results to the original
sinusoidal profile in the case of a # phase—shift. On the contrary, different
segmentations introduce significant effect comparing smoothness values of
Case S and Case S + 7/2. More in details, SPARC results (in bold) decrease
from —2.66 to —4.61 when considering S, while for Sj. oy, they
increase from —4.94 to —4.23.

Lastly, this work aimed to study the influence of smoothness in case of
disturbed signals, simulating real cases in which there could be some tremor.
In Table 3, smoothness values for the signals case G and S with noise are
reported.

Table 3: Movement smoothness values for the Gaussian disturbed signals (case G + 10
Hz noise) and the sinusoidal disturbed signals (case S + 10 Hz noise).

Case G + Noise SPARC LDL]J Case S + Noise SPARC LDL]J
Stot —11.64 —7.38 Stot —6.00 -7.56
Seycle -3.20 -3.27 Seycle —2.88 -3.39
Shalf cycle -3.02 -1.91 Shalf cycle —4.86 -1.99

As shown in Table 3, the addition of noise has caused a smoothness
worsening applying all types of segmentation. SPARC results show only an
exception for Sp¢ cycle in case S, increasing smoothness values considering
the same signal without noise.

In Figure 3, smoothness results are shown. The proposed graphs show
trends similar to those presented for signals without noise in the case of
Gaussian signals. In this comparison, differences arise in the decreasing
of the obtained smoothness values. On the other hand, the fundamental
frequency influences final results when analyzing values obtained by applying
the metrics to sinusoidal signals. Moreover, regarding the S;,; segmentation,
the trend appears non-monotonic.
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Figure 3: Influence of segmentation on movement smoothness for different
frequencies. Values for gaussian signals on the left and for sinusoidal signals on the
right in presence of sinusoidal noise (10 Hz).

DISCUSSION

The study highlights how movement smoothness evaluation is significantly
influenced by the choice of signal segmentation, with crucial implications for
both ergonomics and robotics. A key insight is that a lower smoothness index
reflects less fluid and more irregular motion, meaning that segmentation
choices can lead to an underestimation of movement quality. This has
direct consequences in fields where precise motion analysis is essential for
performance optimization, injury prevention, and interaction safety.

In ergonomics, movement smoothness serves as a critical metric for
assessing worker efficiency, fatigue, and injury risks, particularly in
environments involving repetitive or physically demanding tasks. A lower
smoothness index suggests that movements are more abrupt or inconsistent,
which can indicate inefficiencies and potential strain on the musculoskeletal
system. For example, in manual assembly line work or material handling,
repetitive but irregular movements can contribute to muscle fatigue and
increase the likelihood of injuries. The study demonstrates that whole-
signal analysis generally produces lower smoothness values compared to
segmented approaches, suggesting that prolonged movement tracking may
overemphasize inconsistencies. Cycle-based segmentation, however, often
results in higher smoothness values because it isolates smaller, more
controlled segments of movement. This distinction is crucial for ergonomic
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assessments since evaluating entire work shifts without segmentation could
exaggerate perceived inefficiencies, whereas analyzing movements in discrete
cycles allows for a more accurate identification of problem areas. If
ergonomic interventions are based on improperly segmented data, there is
a risk of misinterpreting movement quality and failing to implement the
most effective solutions. Standardizing segmentation techniques would lead
to more consistent evaluations and better-informed strategies for workstation
design and injury prevention.

In robotics, movement smoothness is equally important, particularly in
industrial automation and human-robot interaction. A lower smoothness
index in robotic motion often indicates a lack of precision and fluidity,
which can negatively impact safety, efficiency, and user experience. The
study’s findings suggest that segmentation techniques play a crucial role
in determining how robotic movement is assessed and optimized. For
instance, industrial robots operating in manufacturing settings must move
smoothly to ensure precise handling and seamless collaboration with human
workers. If smoothness is evaluated over an entire movement sequence,
small inconsistencies, such as brief pauses between tasks or transitions
between movement phases, may lead to artificially low smoothness scores.
By segmenting robotic movements into distinct phases, engineers can
isolate specific areas for improvement, ensuring that robots operate more
predictably and efficiently.

Similarly, in assistive robotics, including prosthetics and exoskeletons,
movement smoothness is a key factor in user comfort and functionality.
A lower smoothness index for a prosthetic limb, for example, could
indicate that the device produces jerky or unnatural movements, making
daily activities more challenging for the user. The study demonstrates that
different segmentation techniques can lead to variations in smoothness
values, meaning that the same movement might be interpreted differently
depending on the analysis method used. If smoothness is measured across an
entire movement sequence, it may not capture the specific moments where
the device functions optimally. By adopting a segmentation approach that
analyzes movement in cycles, it is possible to refine control algorithms to
improve adaptation and responsiveness.

The study’s findings on noise influence are also highly relevant in robotic
applications. In real-world scenarios, robots often operate in environments
where external disturbances, such as mechanical vibrations or user tremors,
can affect movement quality. The results indicate that adding noise generally
lowers smoothness values across all segmentation methods, emphasizing
the need for effective filtering techniques. In industrial robotics, where
precision is crucial, segmentation combined with noise reduction can help
ensure that movement smoothness evaluations reflect actual performance.
Similarly, in assistive robotics, distinguishing between voluntary movement
and involuntary tremors through proper segmentation can enhance device
responsiveness and user experience.

Given the impact of segmentation on movement smoothness evaluation,
future research should focus on refining segmentation methods tailored to
specific applications in ergonomics and robotics. Expanding the analysis to
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real-world datasets would provide further validation of the findings and
improve practical implementation. Additionally, improving noise filtering
techniques would help prevent artificial reductions in smoothness scores due
to external disturbances. Another promising direction is the development
of adaptive segmentation algorithms that dynamically adjust based on
movement context, ensuring that smoothness assessments are both accurate
and meaningful.

By addressing these challenges, movement smoothness evaluation can
become a more reliable tool for optimizing workplace ergonomics and
refining robotic motion control. Ensuring consistency in segmentation
methods will enhance the accuracy of movement quality assessments, leading
to safer and more efficient human-robot interactions and better-designed
work environments.

CONCLUSION

This study demonstrates that movement smoothness is not solely an
inherent property of motion but is also influenced by signal segmentation
techniques. The findings highlight that improper segmentation can lead to
misinterpretations of movement quality, affecting applications in ergonomics
and robotics. In ergonomics, accurate segmentation is crucial for assessing
worker efficiency and preventing injuries, while in robotics, it ensures
fluid and precise motion for industrial automation and assistive devices.
Standardizing segmentation methods and refining noise reduction techniques
are essential for improving smoothness evaluation and optimizing human-
machine interactions. Future research should focus on developing adaptive
segmentation strategies to enhance movement analysis across different
contexts.
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