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ABSTRACT

As artificial intelligence (AI) becomes increasingly part of everyday life including
transportation, manufacturing, etc., it is important to understand how humans utilize
AI to achieve an effective human-AI collaboration. Furthermore, it may be possible
that one’s interaction with AI is influenced by differences in their cultural values.
Currently, literature on cognition differences in cultural values that go beyond the
Eastern and Western comparison is lacking. Consequently, the current study examined
how behavior and performance in a decision-making (DM) task are influenced by
differences in individual cultural values and the presence of an AI decision aide.
To examine cultural values, we used Hofstede’s (1984) cultural dimensions: power
distance, masculinity, long-term orientation, uncertainty avoidance, and collectivism.
Participants completed a DM task consisting of local shapes (e.g., squares and
diamonds) encompassed by a larger global shape. They were asked to determine
if there were more squares or diamonds from the local shapes, while ignoring the
global shape. The global shape matched (GC) or mismatched (GI) the local answer, or
the global shape was absent (LO). Participants’ DM was aided by high (80%) or low
(60%) accuracy AI. Results showed higher accuracy and faster response times in GC
and GI compared to LO. Eye tracking data indicated fewer fixations and longer dwell
times in GC and GI compared to LO. Taken together, this may indicate that the global
shape, whether it matched or mismatched the correct answer, reduced perceptual
demand by acting as a boundary to constrain visual attention. In relation to cultural
dimensions, increases in collectivism and long-term orientation predicted decreases in
performance only when there was no AI while increases in power distance predicted
increases in performance when there was no AI and when AI was highly accurate.
Overall, performance may be influenced by cultural values and an AI decision aide.
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INTRODUCTION

Many of the well-established findings in cognition research have been based
predominantly on WEIRD (white, educated, industrialized, rich, democratic)
samples (Gutchess et al., 2023). However, other research demonstrates that
cognitive differences exist in relation to culture, indicating that not all
cognitive principles are generalizable regardless of individual and/or cultural
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differences. For example, Nisbett et al. (2001) proposed the General Holistic-
Analytic Model to explain differences in cognitive processing between
Eastern and Western cultures. According to this model, Eastern cultures
are more collectivistic and engage in holistic processing by placing greater
emphasis on group features whereas Western cultures are more individualistic
and engage in analytic processing by placing greater emphasis on individual
features.

These cultural differences are further supported by eye tracking metrics
including fixation count and fixation dwell time. For instance, Cenek et al.
(2020) examined global and local attention in an Eastern culture (Taiwanese)
and Western culture (Czechs) by having them view various scenes consisting
of focal (local) objects against different backgrounds. Although both groups
had more fixations and longer dwell times on the focal objects than the
background, Czechs showed more fixations on the focal objects compared
to Taiwanese individuals. Meanwhile, Taiwanese individuals spent longer
fixating on the background compared to the Czechs. Findings from Cenek
et al. (2020) indicate that there may be cultural differences in how people
process the same stimuli.

It is important to note that cognition researchers who have studied cultural
differences have operationalized culture mainly by geographical region (i.e.,
Eastern vs. Western; e.g., Cenek et al., 2020). Although geographical region
is likely an important factor that distinguishes culture, there may be other
cultural differences that should be examined to further understand the extent
to which there are cognition differences at an individual level. Hofstede’s
five-dimensional measure of cultural values, which includes power distance,
uncertainty avoidance, collectivism, long-term orientation, and masculinity,
might be useful to assess cultural differences at the individual level.

As artificial intelligence (AI) becomes increasingly integrated in
transportation, manufacturing, etc., it is important that humans and AI
work together effectively, which requires a certain degree of compliance
from the human counterpart (Love et al., 2023). Researchers have found
relationships between Hofstede’s five cultural values and attitudes in trust in
AI. People higher in uncertainty avoidance (i.e., low tolerance for uncertainty)
and people lower in collectivism are more likely to rely on AI (Chien et al.,
2016). In the context of education, Viberg et al. (2023) found that teachers
who are higher in long-term orientation (i.e., persistence, perseverance)
showed higher trust in AI while those higher in masculinity show more
concerns with using AI. Overall, there is evidence that cultural differences
affect individuals’ attitudes towards AI.

We sought to further investigate the relationship between individual
cultural values and the extent to which people benefited from AI in the
context of cognition. Participants performed a decision-making (DM) task
with or without an AI aide. We implemented eye-tracking measures such as
fixation count and dwell time to examine the extent to which differences
exist across cultural values, providing further support for past research
(e.g., Cenek et al., 2020) indicating that different cultures can influence eye
movement patterns and performance.
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METHOD

One hundred and three participants (62 males, 39 females, 2 did not disclose)
from a midsize Midwestern university participated in the study in exchange
for monetary compensation. Their ages ranged from 18 to 41 years with
a mean of 25.03 and a standard deviation of 4.04. The distribution of
ethnicities was as follows: 81% South Asian, 9% North American, 2%
African American, 2% Middle Eastern, 2% African, 1% South/Central
American, and two chose not to disclose. All participants were required to
have 1) normal or corrected to normal vision, 2) normal motor control,
and 3) no history of epilepsy or seizures. A3 (Trial Type) x 3 (AI Block)
within-subjects design was used. The three trial types included: Local Only
(LO), Global Congruent (GC), and Global Incongruent (GI). The three AI
blocks consisted of: high accuracy AI (80% accurate), low accuracy AI
(60% accurate), and no AI. For the AI confidence level, we sampled from a
lognormal distribution centered around 70–90% confident with a standard
deviation of 3.5.

Perceptual Decision-Making Task

The perceptual DM task was based on Navon’s (1977) perceptual stimuli
task and was further expanded. Participants viewed a display consisting
of local and global shapes. The local stimuli consisted of a set of shapes:
diamonds and squares. The global stimulus was a larger shape (either a
diamond or square) that encompassed the local stimuli. The goal of the task
was to determine if there were more squares or more diamonds from the
local stimuli, while ignoring the global shape. Participants responded using
a mouse by clicking the left mouse button if they believed there were more
squares or clicking the right mouse button if they believed there were more
diamonds. After each trial, participants were asked to rate their confidence
in their answer using a confidence interval scale with 100% at each anchor
for either square or diamond with 50% anchored in the middle of the scale.
The LO trial type consisted of only the local stimuli. In GC, the local stimuli
were encompassed by the global shape that matched with the correct answer
to the local stimuli. In GI, the global shape did not match with the correct
answer to the local stimuli. In addition, participants completed the task with
or without the aid of an AI, which was depicted as a blue circle on the
scale displaying how confident the AI was in determining if there were more
squares or diamonds (see Figure 1).

Participants completed a demographics questionnaire and Yoo et al.’s
(2011) updated scales to assess cultural differences at the individual level
based on Hofstede’s (1984) cultural dimensions. Then, participants were
calibrated to the eye-tracker at less than 1.5◦ of angular error using the
iMotions software. Next, participants completed a practice session of the
perceptual DM task and were provided feedback on correct decisions, misses,
and incorrect decisions. Participants then performed the experiment session
consisting of the three AI blocks. Prior to the AI blocks, participants
completed an AI training session in which they observed how the AI was
making its decision on the confidence interval scale. Participants were then
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given feedback after each trial. In sum, participants completed a total of 1155
trials. Each trial was presented onscreen for 3000 ms followed by a display
for participants to make their confidence judgment. In sum, the study was a
single 2-hour session and participants were compensated at a rate of $10 per
30 mins. They also received a $10 bonus if their accuracy was greater than
or equal to 80%.

Figure 1: A global incongruent trial.

RESULTS

We used the lme4 (Bates et al., 2015) package in R (R Core Team, 2022)
to examine the extent to which AI block and trial type moderated the
relationship between individual cultural dimensions and outcomes (i.e.,
accuracy, response time, fixation count, and dwell time) with participant as
a random effect.

Performance

There was a significant difference in accuracy between each of the three trial
types: GC = 94%, GI = 93%, LO = 92% (R2

= .03, F(2,111111) = 28,
p <.001). GC (b = .01, SE = .003, p <.001) and GI (b = .01, SE = .003,
p <.001) resulted in significantly higher accuracy compared to LO. There
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was no significant difference in accuracy between the three AI blocks: high
accuracy AI = .93, low accuracy AI = .93, no AI = .93.

There was not a significant difference in RT between GC (1.54 sec) and GI
(1.54 sec). However, GC (b = −.01, SE = .003, p <.01) and GI (b = −.01,
SE = .003, p <.001) resulted in significantly faster RT compared to LO
(1.56 sec; R2

= .19, F(2,111111) = 6.19, p = .002). There was not a
significant difference in RT between the low accuracy AI (1.55 sec) and no
AI (1.56 sec). However, high accuracy AI resulted in significantly faster RT
(1.53 sec; R2

= .03, F(2,111111)= 44.6, p <.001) compared to low accuracy
AI (b=−.02, SE= .003, p <.001) and no AI (b=−.02, SE= .003, p <.001).

Oculomotor Activity

Table 1 displays the mean number of fixations and dwell times (ms) per trial
to the local stimuli area of interest (AOI) for each trial type and AI block. The
number of fixations refers to the numbers of times that a participant fixated
on an area in the visual display while dwell time refers to the duration of each
of those fixations.

For fixation count, there was a significant main effect of trial type
(R2
= .01, F(2, 544) = 19.91, p <.001). The LO trial type showed

significantly more fixations than the GC trial type (b = −0.25, SE = 0.046,
p <.001) and GI trial type (b = −0.25, SE = 0.046, p <.001). However, there
was no significant main effect of AI block and the Trial Type x AI Block
interaction was not significant.

For dwell time, results revealed a significant main effect of trial type
(R2
= .002, F(2, 66681) = 51.96, p <.001). Post-hoc analyses showed that

the LO trial type had significantly shorter dwell times compared to the GC
trial type (b = 25.79, SE = 2.80, p <.001) and GI trial type (b = 27.38,
SE = 2.80, p <.001). There was also a significant main effect of AI block
(R2
= .002, F(2, 66684) = 19.75, p <.001). The high accuracy AI block had

shorter dwell times compared to the low accuracy AI block (b = −15.69,
SE = 2.24, p <.001) and no AI block (b = −14.36, SE = 2.25, p <.001).
Finally, the Trial Type x AI Block interaction was not significant.

Table 1: Mean number of fixations and dwell times per trial for each trial type and AI
block. Standard error of the mean is in parentheses.

AI Block High Accuracy AI Low Accuracy AI No AI

Trial GC GI LO GC GI LO GC GI LO

Fixations 3.69
(0.02)

3.70
(0.02)

3.91
(0.03)

3.69
(0.02)

3.67
(0.02)

3.91
(0.03)

3.65
(0.02)

3.65
(0.02)

3.90
(0.03)

Dwell
Time (ms)

414.65
(2.71)

415.50
(2.78)

394.62
(4.45)

427.65
(2.70)

432.36
(2.83)

401.46
(4.36)

430.05
(2.82)

429.95
(2.84)

405.51
(4.47)

Predicting Performance and Eye Tracking Metrics With Hofstede’s
(1984) Cultural Dimensions

Trial type and AI block resulted in significant slopes in terms of collectivism
predicting accuracy. For GC (b = −.02, SE = .007, p = .003) and GI
(b = −.01, SE = .003, p = .04) in the no AI block, increases in collectivism
predicted decreased accuracy. No significant slopes were found for the
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relationship between collectivism and response time. Trial type and AI block
were significant moderators in terms of collectivism predicting number of
fixations and dwell time. However, no significant slopes were found for the
relationship between collectivism and number of fixations or dwell time.

Trial type and AI block resulted in significant slopes in terms of long-
term orientation predicting accuracy and response time. For GC (b = −.03,
SE = .01, p = .008), GI (b = −.04, SE = .01, p <.001), and LO
(b = −.03, SE = .01, p = .01) in the no AI block, increases in long-term
orientation predicted decreased accuracy. For all trial types and in all AI
blocks, increases in long-term orientation predicted slower response time
(e.g., no AI block = GC: b = .12, SE = .05, p = .01; GI: b = .12, SE = .05,
p <.01; LO: b = .16, SE = .05, p = .002). Trial type and AI block were
significant moderators in terms of orientation predicting number of fixations
and dwell time. Specifically for the LO trial type and no AI block, increases
in long-term orientation significantly predicted more fixations (b = 0.65,
SE = 0.30, p = .033). No significant slopes were found for the relationship
between long-term orientation and dwell time.

Trial type and block resulted in significant slopes in terms of power
distance predicting response time. For GC (b = −.08, SE = .03, p = .02),
GI (b = −.07, SE = .03, p = .03), and LO (b = −.08, SE = .03, p = .02) in
the no AI block and for GC (b = −.08, SE = .03, p = .02), GI (b = −.07,
SE = .03, p = .04), and LO (b = −.07, SE = .03, p = .03) in the high
accuracy AI block, increases in power distance predicted faster response time.
No significant slopes were found for the relationship between power distance
and accuracy. Trial type and AI block were significant moderators in terms
of power distance predicting number of fixations and dwell time. For the
GC trial type (b = −0.49, SE = 0.18, p = .010), GI trial type (b = −0.44,
SE = 0.18, p = .020), and LO trial type (b = −0.47, SE = 0.19, p = .014),
increases in power distance significantly predicted fewer fixations in the high
accuracy AI block. Similarly, for the GC trial type (b = −0.46, SE = 0.18,
p = .015), GI trial type (b = −0.44, SE = 0.18, p = .018), and LO trial type
(b = −0.52, SE = 0.19, p = .007), increases in power distance significantly
predicted fewer fixations in the no AI block. For the LO trial type and low
accuracy AI block, increases in power distance also significantly predicted
fewer fixations (b = −0.40, SE = 0.18, p = .035). No significant slopes were
found for the relationship between power distance and dwell time.

No significant slopes were found for the relationship between masculinity
and accuracy or response time. Trial type and AI block were significant
moderators in terms of masculinity predicting number of fixations and dwell
time. For the GC trial type (b = −0.29, SE = 0.12, p = .019), GI trial type
(b = −0.31, SE = 0.12, p = .014), and LO trial type (b = −0.33, SE = 0.12,
p = .009), increases in masculinity predicted fewer fixations in the high
accuracy AI block. Similarly, for the GC trial type (b = −0.25, SE = 0.12,
p = .046), GI trial type (b = −0.26, SE = 0.12, p = .038), and LO trial
type (b = −0.27, SE = 0.12, p = .033), increases in masculinity predicted
fewer fixations in the no AI block. For dwell time, increases in masculinity
predicted longer dwell time for the GI trial type and no AI block (b = 37.85,
SE = 18.50, p = .045).
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Trial type and AI block resulted in significant slopes in terms of uncertainty
avoidance predicting response time. For GC (b = .10, SE = .05, p <.05),
GI (b = .10, SE = .05, p <.05), and LO (b = .10, SE = .05, p <.05)
in the no AI block, increases in uncertainty avoidance predicted slower
response time. No significant slopes were found for the relationship between
uncertainty avoidance and accuracy. Trial type and AI block were significant
moderators in terms of uncertainty avoidance predicting number of fixations
and dwell time. No significant slopes were found for the relationship between
uncertainty avoidance and number of fixations. For the GC trial type
(b=−89.69, SE= 42.30, p= .038), GI trial type (b=−106.80, SE= 42.31,
p= .014), and LO trial type (b=−87.68, SE= 43.15, p= .046), increases in
uncertainty avoidance predicted shorter dwell times for the low accuracy AI
block. Similarly, for the GC trial type (b = −108.71, SE = 42.30, p = .012),
GI trial type (b = −102.38, SE = 42.30, p = .018), and LO trial type
(b = −92.41, SE = 42.30, p = .035), increases in uncertainty avoidance
predicted shower dwell times for the no AI block.

DISCUSSION

Our purpose was to understand the extent to which individual cultural
values influenced perceptual bias for local and global stimuli and to examine
the relationship between cultural values and the benefit from AI. Overall,
participants exhibited poorer performance in the LO trial type (slowest RT
and lowest accuracy) compared to GC and GI. This finding is paralleled by
LO showing more fixations and shorter dwell times than GC and GI trial
types. Regarding the AI, participants had faster RT in the high accuracy AI
block compared to the no and low accuracy AI block, which is paralleled by
shorter dwell times in the high accuracy AI block compared to the no and low
accuracy AI block. Our results raise theoretical implications relating to the
influence of global stimuli, individual cultural differences, and the presence
and accuracy of AI on performance and oculomotor activity.

The first theoretical issue raised by our results is related to the influence of
global stimuli on people’s performance in a visual search task. Participants
had greater accuracy, faster RT, fewer fixations, and longer dwell times in
GC and GI compared to LO. These findings indicate that the global shape,
whether congruent or incongruent, reduces the level of perceptual demand
placed on people’s visual attention compared to the unbounded local only
area. A direction for future research is to investigate the presence of a control
condition that includes a benign global shape (i.e., a circle) compared to LO.

The second theoretical issue raised by our results is related to the
relationship between individual cultural values and AI, and the influence of
this relationship on performance.

Viberg et al. (2023) found that higher collectivism related to greater
perceived concerns when using AI. In contrast, we found that higher levels
of collectivism (i.e., people who are group-oriented and likely portray more
global processing) led to decreased performance only when there was no AI,
suggesting that participants were using the AI to their benefit regardless of its
accuracy. One explanation for the contrast in findings is the importance of
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context. Viberg et al. (2023) studied teachers’ attitudes for AI adoption in the
classroom over the long-term while we were concerned with the benefit from
AI in a short-term task. People likely have less concerns using AI as an aid to
make more efficient decisions in the short-term compared to implementing AI
to take over a substantial portion of an employee’s roles and responsibilities
over the long-term.

Viberg et al. (2023) found that people higher in long-term orientation
perceived greater benefits from using AI. In line with past research, we found
that people higher in long-term orientation showed decreased performance
only when the AI was absent. These findings suggest that people higher in
long-term orientation (i.e., people who value planning and gathering more
information when making decisions) used the AI to their benefit regardless
of its accuracy.

Chi et al. (2023) found that higher power distance related to higher
expectations for AI and lower tolerance for unreliable AI. In line with these
findings, we found that higher levels of power distance led to increased
performance when the AI was either absent or high in accuracy. This finding
suggests that people higher in power distance (i.e., people who recognize
power hierarchies, value authority, and are achievement-oriented) might have
viewed the AI as an authority figure, which they relied on to make more
accurate and efficient decisions. However, people higher in power distance
did not experience increased performance in the low accuracy AI block
because they likely viewed the AI as an unreliable authority figure, which
hindered their ability to make quick and accurate decisions.

Overall, eye tracking metrics (e.g., fixation count and dwell time)
supported the conclusions regarding cultural impacts on visual task
performance for collectivism, long-term orientation, and power distance.
A direction for future research is to investigate additional objective and
subjective underlying dimensions of culture (e.g., sociocultural norms,
religion, socioeconomic status, etc.) and to analyze the interactive effect
between multiple cultural dimensions on performance and DM.

LIMITATIONS

It is important to note limitations that may have affected the generalizations
drawn from our results. We were unable to analyze group differences between
cultures due to an imbalance in our sample. However, recent researchers
have suggested the importance of analyzing the effect of individual cultural
differences (e.g., Yoo et al., 2011), and we found evidence supporting that
individual cultural differences have a significant impact on benefit from AI,
oculomotor activity, and performance.

CONCLUSION

The purpose of our study was to 1) examine the influence of individual
cultural differences on perceptual bias, and 2) examine the relationship
between individual cultural differences and the benefit from AI in a visual
search task. We found that global stimuli played an important role in
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oculomotor activity and performance, and we found that individual cultural
differences including collectivism, long-term orientation, and power distance
had a significant impact on oculomotor activity and performance with
implications for reliance on AI-enabled decision-support systems. The
findings of our study contribute to the existing literature by expanding
Navon’s (1977) visual search task, examining the influence of global stimuli
on performance, and investigating the relationships between individual
cultural differences and AI. In sum, we found evidence that people’s
performance in a visual search task is beneficially influenced by the presence
of global stimuli and impacted by people’s individual cultural values and the
extent to which they benefited from the AI.
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