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ABSTRACT

Rapidly growing mobile phone sensing and computing capacities create wonderful
opportunities for environment monitoring and data analysis. Mobile vision combines
digital cameras and machine vision algorithms on phone platforms for particular
visual data analysis. We explore the phone “microscopy” with real-time machine
vision computing and dynamic visual updating functions. We developed a semantic
description of the shape and dynamics of the toxic algae Karenia Brevis, collected
by phone, that both humans and machines can understand. We also explore the
system architecture of the mobile vision modules, along with their performance
measurements.
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INTRODUCTION

Today’s mobile phones are much more powerful than the computer on
NASA’s Apollo 11 that landed on the Moon on July 20, 1969. The Apollo
Guidance Computer (AGC) had only 36 KB of RAM and 2 KB of ROM,
powered at 55 watts, and weighed 90 pounds (Hall, 1996). The AGC had
the interfaces for display and keyboard (DSKY), Inertial Motion Unit (IMU),
Rendezvous Radar (RR), Landing Radar (LM), Telemetry Receiver, Engine
Command, and Reaction Control System. The computer’s performance was
comparable to the first generation of home computers from the late 1970s,
such as Apple II, TRS-80, and Commodore PET, which was sufficient for
real-time navigation and control of the lunar module.

Contemporary mobile phones have much more computing power than
the AGC and interfaces to sensors and communications such as imaging,
Bluetooth, and WiFi. Machine vision and pattern recognition algorithms
enable mobile phones to recognize handwriting, words, animals, plants,
faces, gaits, vehicles, and multispectral objects in near-infrared, infrared, or
ultrasound. We can call this technical development “mobile vision”, which
enables mobile phone users to collect field data, process the data on the
phone, and share the information among users. It has a broader impact on
environmental protection, education, learning, and training, especially for
students and adults who are into nature and the sciences, which empowers a
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curious citizen to pursue scientific discovery, communication, and situation
awareness for the community.

Here, we explore phone “microscopy” with real-time machine vision
computing and dynamic visual updating functions. We developed a semantic
description of the shape and trajectory of the toxic algae Karenia Brevis,
collected by phone, that both humans and machines can understand. We
also explore the system architecture of the mobile vision modules with
performance measurements.

SEMANTIC SHAPE DESCRIPTION

For thousands of years, people have invented languages to describe shapes.
The ancient Egyptians developed the pictorial language Hieroglyphs and
ancient Chinese created the pictorial language Oracle (Cai, 2017). These
verbal and symbolic descriptions are semantic and subjective. They were
not scientifically accurate until philosophers and scientists looked into the
descriptions. For example, the Greek philosopher Pythagoras, born around
570 BC introduced the Pythagorean theorem, a fundamental relation in
Euclidean geometry between the three sides of a right triangle (Sally and Sally,
2007).

The Dutch businessman Antonie van Leeuwenhoek in the 17th century
made over 500 microscopes, many with a magnification far superior
to contemporary models. His discoveries include bacteria, protozoa, red
blood cells, spermatozoa, and how minute insects and parasites reproduce
(Cartwright, 2023; Cai, 2015). His day job was as a draper and a minor
municipal officer in Delft, Netherlands. In his work inspecting cloth, he
needed magnifying glasses. He used microscopes to show microorganisms
that are invisible to our bare eyes.

Harmful algal blooms (HABs) cause significant ecological, economic, and
human health problems in marine, estuarine, and freshwater environments
around the globe. There are a variety of phytoplankton that produce these
blooms in both freshwater and marine environments. Protecting people and
economies requires active and distributed monitoring to detect, characterize,
and forecast these blooms. Thanks to high-powered microscopes, we can
identify the specific types of algae that cause each HAB. Here we focus on
K. brevis, the causative organism responsible for red tide events along the US
Gulf Coast. Figure 1 shows the microscopic images of these species.

Figure 1: From left to right: microscopic images of K. brevis the organism responsible
for persistent and widespread red tide events along the US Gulf Coast (Photo credit:
M. Vandersea, NOAA).
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We can see that they have a distinct shape and flagella for motility. When
human analysts observe the samples under a microscope, they intuitively
connect the shapes to words: round disks, spirals, and straight lines, which
are convenient to detect, track, classify, remember, and communicate with
others. As routine work, they need to identify the type of species, track
their movements, and count them, which is a cognitively challenging task,
and only feasible by taxonomically trained experts with access to specialized
high-powered microscopes.

Prevailing Machine Learning (ML) or Artificial Intelligence (AI)
algorithms, such as Yolo (Yolo, 2025), apply biomorphic multilayer neural
networks to process massive training data. For video or image (frame by
frame) processing, the ML/AI algorithms usually require manual object
annotation for the training data; for example, manually highlighting the
shape of K. brevis cells in the microscopic images and feeding the annotated
images to the model as training samples. The ML/AI model would run an
intensive training-testing process to reach a working model. This approach
has several weaknesses: first, it is a “black box” that lacks transparency to
the users about the detection, classification, and tracking mechanisms. When
the model fails, the developer or the user doesn’t know how to fix it. Second,
the results are sensitive to the quality and breadth of available training data.
When the sampling conditions change, the model has to be retrained to verify
accuracy and improve classification. Third,ML/AImodels normally are CPU-
or GPU-intensive computing processes that might hinder operation in the
field, for example, at the coast or on a boat.

On the other hand, machine vision is a significant branch of AI,
advancing the rapid development of mobile robotics, augmented reality
(AR), and spatial computing. For decades, machine vision algorithms have
bridged semantic shape descriptions and computational models (Sonka et al.,
1999).

Pre-processing

We start with preprocessing each frame in a ∼30 seconds microscopic
video. Each video frame is first converted from color to grayscale to reduce
computational complexity and simplify subsequent processing. A normalized
convolution filter 3 × 3 is applied to the grayscale image to smooth out
the noise and enhance the local features. The smoothed images are then
thresholded using fixed intensity values to produce a binary image that
emphasizes the objects of interest. A dilation operation with a 5 × 5 kernel
is performed over multiple iterations to bridge the small gaps in the binary
regions. Finally, edge information is extracted via Canny edge detection,
which produces a robust edge map for contour extraction. The output of
the Canny edge detector is used with OpenCV’s findContours function to
extract contours from the frame. To reduce false positives caused by noise,
only contours with an area exceeding a small threshold (e.g., 10 pixels) are
retained. This results in a set of candidate contours that delineate potential
shapes within the frame.
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Shape Description

We use the following shape descriptions for the microscopic videos:

• Compactness = 4π A
P2

, where A is the area of the shape and P is the area’s
perimeter. A value near 1 indicates an ideal circle.

• Radial Intensity Correlation =
∑N

i = 1(Ii−I)(ri−r)√∑N
i = 1(Ii−I)

√∑N
i = 1(ri−r)

, where Ii is the

intensity of pixel i, ri is its radial distance from the centroid, I and r are the
mean intensity and mean radial distance, respectively. It is the correlation
between pixel intensities within the contour and their radial distances
from the centroid of the contour. A high correlation indicates a radially
symmetric intensity profile.

• Curvature Variability(σκ ) =
√

1
N−1

∑N
i (κ(si)− κ)2, where κ(si) is the

curvature at point, s is the arc-length parameter and κ is average
curvature. It indicates the standard deviation of the local curvature
(estimated from differences in adjacent tangent angles) is calculated. A
lower standard deviation implies a smoother boundary.

• Elongation = a
b , where a is the length of the ellipse’s major axis and b is

the length of its minor axis. By fitting an ellipse to the contour, the ratio
of the major to minor axes is determined. Ratios close to unity indicate a
nearly circular shape.

• Convexity = AContour
Ahull

, where AContour is the area of the contour and Ahull

is the area of its convex hull. It is measured as the ratio of the contour
area to its convex hull area. A ratio near 1 suggests a highly convex shape.

The shape descriptors classify each contour into two groups: Karena Brevis
or background features.

IMPLEMENTATION

This project is designed to use a smartphone to record videos from a
microscope with the sample from the coast, intended to be implemented into
a citizen science program operated through a partnership between NOAA’s
National Centers for Coastal Ocean Science (NCCOS) and the IOOS Gulf
Coast Ocean Observing System(GCOOS). The results of which will be used
in the NOAA-NCCOS HAB Respiratory Intensification Forecast.

The developed mobile vision software processes the video on the
smartphone to determine the cell types, track the relevant cells, and count
them at each frame of the video. Using a mobile phone to record a video
from the microscope is practical with many contemporary mobile phones,
such as Android and iPhone. However, it is often challenging to implement
machine vision algorithms onmobile platforms because of multiple operating
systems, multiple languages, and compatibility issues for machine vision
libraries. Ideally, we might use a cloud computing server to run a single
machine vision software, but it needs a broader band Internet service provider
for transmitting video data and sustainable computing resources for a large
group of users simultaneously. Google’s CoLab is a potential solution in
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Python code on a virtual machine from mobile phones. However, it requires
a subscription for efficient computing tasks (CoLab, 2025).

Here, we focus on implementing two mobile phone systems: Android and
iPhone. We started with Java for Android phones and Swift for iPhones. In
the current prototypes, the user interface is simple: The user selects the sample
video from the photo folder and then presses the “Processing” button. The
screen displays the frame-by-frame cell type and cell counting results in real
time. After the video analysis is completed, the user can generate an analysis
report and/or the resulting video with the detected HAB cells.

Figure 2: Detected Karenia Brevis cells are highlighted in red contours. Each frame
contains detected cell types, the current Karenia Brevis cell count, and the frame
sequence number.

PRELIMINARY RESULTS

We have tested about 100 sample videos collected from Android and iPhones.
Each video is around 30 seconds at 30 frames per second in high resolution.
Figure 4 is the frame-by-frame cell count data results from a sample video.
Figure 5 is the summary sheet of the cell count results by mobile phones
and by human analysts. We found that Android phones and iPhones have
different lighting mechanisms and frame shapes. We have developed an
adjustment function to adapt to the variations.

Figure 3: Screenshots of the Android and iPhone apps with two languages.



150 Cai et al.

Figure 4: The frame-by-frame cell count data from a sample video.

Figure 5: The average cell count results from mobile phones compared to the human
analysts’ cell counts.

CONCLUSION

Mobile phone sensing and computing capacities create wonderful
opportunities for environmental monitoring and data analysis. Mobile vision
combines digital cameras and machine vision algorithms on phone platforms
for particular visual data analysis. We explore the phone “microscopy”with
real-time machine vision computing and dynamic visual updating functions.
We have developed a semantic description of the shape and dynamics of the
toxic algae Karenia Brevis that humans and machines can understand. We
also explored the system architecture of the mobile vision modules with the
performance measurements. Our preliminary results show that it is possible



Mobile Vision for Algal Bloom Probe 151

to process the microscopic video data on mobile phones and to generate
analytical reports.

Our experience indicates that graphical user interfaces can be optimized
for efficiency. For example, the screen resulting from live video processing
can be maximized in horizontal orientation, and the buttons on a command
window can be shrunk. Visualizing the mobile vision results frame-by-frame
is useful for validation. Furthermore, we plan to implement the GPS mapping
functionality to visualize the sample collection location and the HAB alert
level on the phone.
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