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ABSTRACT

While many traditional approaches to robotics training have been successful, the
expense, space, and hazards associated with industrial robotics can be prohibitive and
limit the scale at which students can be trained. Use of advanced digital technologies
such as XR environments can provide economic and safe training alternatives.
Previously introduced in this same forum, the Intelligent Learning Platform for
Robotics Operations (I.-PRO) is now operational and in use in an undergraduate
credentialing course at a major university. I-PRO uses a multi-modal approach to
automating instruction. It leverages students’ verbal responses and actions, a pre-
trained large language model, and machine-learned models within an immersive
(VR) environment for learning operations of robotic arms. At the core of the IL-PRO
experience is the deployment of an automated learning system (ALS) designed to track
student learning progress to personalize feedback and select i learning tasks. The ALS
currently accounts for students’ levels of conceptual understanding and their motor
skills relevant to operating the IL-Pro virtual robotic arm. This paper describes the
learning content and system design of IL-PRO as currently implemented and presents
sample student performance data from a recent pilot of the system.

Keywords: Robotics education, Virtual reality, Automated learning systems, Artificial
intelligence, Machine learning

INTRODUCTION

Advances in automation and robotics will continue transforming the global
economy as they enhance human strength, perception, speed, and dexterity.
These technologies reshape industries while disrupting job markets by
altering skill requirements for employment (Feng & Graetz, 2020; Tong et al.,
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2021). Research shows automation replaces tasks requiring both high and
low levels of training and engineering complexity, urgently necessitating
targeted interventions (Feng & Graetz, 2020).

However, students learning industrial robotics follow arrangements largely
unchanged from traditional classrooms and workshops. Due to equipment
costs, hands-on classes are often small, with students working alone or in
small groups. Additionally, hands-on training can pose safety risks. Thus,
traditional robotics instruction can limit scalability as it requires low student-
to-teacher ratios and the need for specialized equipment.

Meanwhile, learning sciences have reshaped training design and delivery
by leveraging advancements in modeling, simulation, and animation. These
changes create a dynamic educational landscape with instructional routines
that integrate new technologies (Palvia et al., 2018). Some robotics courses
incorporate new approaches, such as cloud-based learning and online
delivery of text-focused materials. However, use of advanced technologies
like Virtual Reality (VR), machine learning, and large language models for
automated assessment and feedback is scant.

Addressing these gaps represents a key opportunity to modernize
robotics training and better align it with contemporary learning needs.
An Al-powered, VR-driven approach could reduce dependence on costly
resources, enhance scalability, and improve safety. The Intelligent Learning
Platform for Robotics Operations (IL-PRO) is a digital learning environment
that leverages natural language processing, machine learning, and VR to
personalize student learning

In what follows, we present a general description of adaptive learning
systems and a learning theory well-suited for robotics operations—dynamic
systems theory. We then describe IL-PRO’s automated learning system and
how it applies dynamic systems theory to inform content and tasks for
learning industrial robotics. The concluding sections highlight key milestones
in utilizing IL-PRO as a core component of a credential course in basic
robotics operations.

BACKGROUND

Adaptive Learning Systems

By incorporating new technologies, adaptive learning systems afford
personalized student experiences at unprecedented scales. Current
approaches to adaptive instruction increasingly make use of Al to personalize
instruction (Guettala et al., 2024). Though the shift is recent, as may be
expected, Al is quickly becoming an important tool for adaptive learning
(Ezzaim et al., 2024).

Whether or not Al is used, there are several general approaches to adapting
instruction. So called ‘micro-adaptive’ approaches (Ennouamani & Mahani,
2017) focus on inferring students’ learning needs during instruction to
provide real-time or near-real-time feedback, learning content and tasks.
These approaches rely on data collected on the students’ current performance
rather than measures implemented before the start of the learning
experience, i.e. pre-task measures. In contrast to macro-adaptive approaches,



202 Corrigan et al.

micro-adaptive approaches differentiate feedback, content delivery and task
delivery based on students’ current task performance. Monitoring students’
responses as well as their response processes supports the system’s inferences
about what students know and can do, informing system recommendations
and delivery of feedback, content and additional tasks.

Historically, most adaptive learning systems have been designed around
what is called a domain model and a student model (Nwana, 1990). The
domain model is also known as an expert model. Domain models specify
the concepts, rules and strategies associated with a given domain or subset
of a domain (Nkambou et al., 2010). The student model can be thought
of as mapping a given students’ current knowledge, skills and abilities onto
one or more domain models. As students progress, that mapping becomes
increasingly complete—i.e., components of the student’s knowledge, skills and
abilities are mapped onto a greater number of elements within the targeted
domain model.

Progress Maps

Somewhat different from traditional conceptions of the student model,
learning progressions, or progress maps, rely on a developmental view
of learning. They characterize the domain model as a set of progressive
steps learners take as they become increasingly proficient in a domain.
Characterizing the domain model in this way allows for qualitative
descriptions of what students currently know and can do. Likewise, students’
previous levels of performance can be described with regard to the same
developmental path, as can those levels of knowledge, skill and ability that
are likely to be achieved next.

When the progress mapping approach is used in this way, the student
model can be understood as a location on a developmental pathway, i.e.
the progress map. The history of a student’s learning pathway is logged by
tracing the current and previous locations on the progress map. Instructional
decisions can be made on the current location and with awareness of the next
most likely step in the student’s pathway.

Automating Instruction via Progress Maps

In our work on automating robotics instruction, we have adopted the
use of a concept mapping, or learning progressions, approach (Duncan &
Hmelo-Silver, 2009). The IL-PRO learning experience is designed around
one or more such construct maps with automation decisions guided by
the student’s current position on the map and the knowledge, skills and
abilities associated with the map’s upcoming levels. As an example, Figure 1
summarizes the construct map used in the IL-PRO module treating inertia
and payload. The role of the progress map in automating instruction within
the IL-PRO environment is described later in this paper.

IL-PRO’s pedagogical model incorporates information about both the
domain and student models to select appropriate content, feedback and tasks
to serve in response to the student’s most recent performance(s). IL-PRO then
uses what is called a mixed initiative approach, allowing students to choose
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whether they want to repeat a given task, complete a suggested remedial task,
or move on to the next level even when they fail.

Full Intertia
Concept

Speed . . Mass
only only Level 1

Level 0
No Intertia Concept

Figure 1: Progress map for inertia.

Learning Theory for ILLPRO —Dynamic Systems

Our understanding of dynamic systems originates with Kelso (1999) and
informs the design of the IL-PRO experiences. The theory of dynamic systems
considers learners as self-organizing dynamic systems in the sense that when
they are faced with complex tasks or changing environments, they can
independently explore potentially large solution spaces to discover, test, and
modify their response.

As learners discover productive parts of the solution space for the
problems they are interested to solve they adapt their approaches and
their understanding—identifying new solutions and new ways of thinking.
The main point of training within the IL-PRO is to motivate students to
attempt well-designed problems, or tasks, within environmental constraints
to discover and practice desirable solutions. In our case, the more desirable
solutions reflect acquisition of knowledge, skills and abilities that are higher
up on the given module’s concept map, or domain model.

Our dynamic systems approach is well suited for carnival challenges
which are game-like activities typically found at carnivals. These challenges
can require both novel conceptual understandings and complex motor skill
solutions. In the IL-PRO context, our tasks introduce conceptual and/or
motor skill challenges that motivate students to explore new ways of thinking
and new movement patterns that are relevant for mastery of operating
robotic systems. Putting this perspective to use for teaching and learning
involves employing design-based research to explore and understand the
tasks, task features, and environments that facilitate students’ discovery of
robust solutions to basic, everyday problems in robotics.



204 Corrigan et al.

Game-Based Learning in IL-PRO

With its reliance on dynamic systems theory, IL-PRO requires students’
sustained engagement as they search for solutions across potentially large
spaces. The IL-PRO modules rely on a notion of ‘serious play’ to motivate
students’ continued engagement to discover workable solutions. This design
decision is supported with growing evidence that well-designed games
motivate learners to persist in challenging tasks, engendering high levels of
cognitive, affective, sociocultural, and behavioral engagement (Plass, Homer
and Kinzer, 2015); and destigmatize failure (July, 2013). Interestingly, in
the context of immersive VR settings, serious play can also provide context
and motivation for situated practice (Dawley and Dede, 2014) of patterns of
movement through careful use of game mechanics and level-design (Adams &
Dormans, 2012). With the use of immersive virtual reality, IL-PRO situates
students in sensory-rich environments and fosters a sense of presence that
can contextualize the learning experience in a wide range of realistic settings
relevant to robotics.

IL-PRO LEARNING CONTENT

The current IL-Pro learning content is organized into six learning modules
that each treat one or more components of fundamental training for
robotics. The curriculum’s structure and content were informed by insights
from an industry summit and interviews with automation engineers,
software developers, roboticists, designers, educators, and system integrators.
Additionally, the project team conducted an extensive literature review
and analyzed existing robotics courses to refine key components of the
training content. This process ensured alignment with industry needs and
best practices in robotics education.

The modules are organized based on their difficulty and the dependencies
among the learning goals for each module. Each module presents students
with one or more carnival tasks. The carnival tasks require targeted
conceptual understanding, use of sufficient dexterity guiding the robotic
arm through use of a game controller, or a combination of both. Table 1
provides a summary of the current IL-PRO content for each module, the
associated learning objectives, the tasks, and the type of knowledge gained
after successful completion of the task.

Table 1: IL-PRO module learning content.

Module Learning Objective(s) Task(s) Description Focal Knowledge
Type(s)
1. Kinematic - Describe a robot’s Identify the robot’s kinematic ~ - Declarative
Chain & Jogging kinematic chain chain, differentiate jogging Knowledge
Commands - Identify the components of methods, practice movement - Knowledge of
a robotic arm control, match joints, push Processes

- Understand the elements objects, and trace toolpaths.
of a teach-pendant and
differentiate between the
various jogging methods
for moving a robot.

Continued
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Table 1: Continued

Module Learning Objective(s) Task(s) Description Focal Knowledge

Type(s)

2. Robotics - Identify the robot’s work Mark Robots’ safety limits, - Declarative

Safety envelope. recalibrate boundaries, identify Knowledge
- Recall safety zones, error Safety hazards. - Knowledge of

messages, potential safety Processes
hazards.

3. Reference Demonstrate the ability to Calibrate work object frames, - Conceptual

Frames (RF) position and orient a robot’s record poses, and analyze Understanding
end-effector. spatial positioning for accurate - Knowledge of

robotic navigation and Processes
movement.

4. Acceleration Demonstrate the impacts of Successfully balance 3 balls of - Conceptual
acceleration and mass on varying weights. Understanding
robotic arm performance and - Motor Skill
stability. Solutions

5. End-Effectors  Identify the Tool Center Point  Calibrate end-effectors; - Declarative

(EE) (TCP) and demonstrate Correct misalignment; Control Knowledge
calibrating the End-Effectors.  EE with digital and analog - Knowledge of

signals for precision tasks. Processes

6. Motion Describe techniques for Use Waypoints and Toolpaths - Declarative

Planning creating a robotic program, for obstacle navigation and 3D Knowledge
including the waypoint and printing. - Knowledge of
tool-path methods. Analyze movement precision, Processes

output quality in robotic tasks - Conceptual
Knowledge

Design of the learning content and the carnival tasks in each module reflect
increasing levels of understanding and skill in the targeted content. These
increasing levels of knowledge and skill are summarized in one or more
progress maps. The progress maps can also be thought of as structuring an
outcome space for learners.

As one example of how progress maps are used, we describe the content
of IL-PRO’s Module for teaching the concept of “Robot Acceleration” which
treats the inertia concept in the context of robot control. The module is
designed around two progress maps, one for conceptual understanding of
inertia, and another for enacted understanding of inertia. We introduce a
complex task in this module to support students’ ability to develop movement
solutions for a robotic arm that reflect an understanding of inertia and its
ramifications for robot control. The carnival task in the Acceleration Module
is related to what is called the crazy driver, or Zig-Zag game, shown in
Figure 2. In the crazy driver game, players tilt a narrow, flat and omni
rotational board to get a ball to travel to the end of a course without falling off
the edge or through one of the holes on the board. In our simplified version
of the same game, students use a game controller to manipulate a robotic
arm that titles an omni rotational board for getting a ball to trace specified
paths. The students then repeat the same process with two additional balls
of increasing weight.

Changing the mass of the ball and the time allotment for completion
forces players to deal with the mass and speed variables of inertia. From
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an instructional perspective, this task helps students discover how direction
and angle of tilt influence the force needed to control the ball’s motion.
By manipulating the board, students gain hands-on understanding of the
relationship between directional forces, acceleration of the robot, and ball
movement.

Through repeated practice and guided feedback, students explore various
movement solutions to discover how the ball’s mass and speed affect its
motion. The approach guides student learning by helping them attend
to the consequences of their actions, adjust their strategies, and vocalize
new conceptual understandings. This is one example of how the team has
operationalized the dynamic systems and embodied learning concepts within
the IL-PRO experience.

Figure 2: The crazy driver carnival task.

Figure 3 provides an example of the outcome space used in the Robot
Acceleration Module and its ramifications for robot control.

As described in Figure 1, the progress map for conceptual understanding
of inertia has four levels of understanding and five outcomes. The levels of
understanding include an understanding of how the mass or the speed of
an object affects the force required to change the object’s motion (Levels 1a
and 1b), an understanding that accurately accounts for both mass and speed,
and the highest level in which students are able to explain the ramifications of
inertia for robot control. The lowest level, Level 0, includes students who are
not yet considering that mass and speed of an object affect the force required
to change the object’s motion.

The Robot Acceleration Module requires an integrated understanding of
inertia that involves both conceptual understanding of the inertia concept
and an ability to enact that understanding by practicing and successfully
completing a related motor skill task. The progress variable for students’
movement solutions is defined with reference to a set of expert performances.
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Student performance is evaluated by comparing their movement of the
robotic arm to those of expert users who developed and practiced optimal
techniques through multiple sessions in IL-PRO.

The movement solutions progress variable for the Module is divided
into three levels. Level 1, the novice level, is identified with motor skill
performances with the greatest departure from the expert performance.
Level 2, the developing level, is reserved for students who are not yet
performing like the experts but who exhibit greater similarity to the expert
performance in their movement patterns than the novices. Level 3, the expert
level, is identified with students who present movement patterns highly
similar to those of the expert.

When students’ joint location is identified along the movement solutions
map (3 levels: novice, developing, expert) and the conceptual understanding
map for inertia (5 levels), the result is an outcome space with 15 possible
locations (a 5 x 3 matrix). By tracking students’ position in this outcome space
across multiple attempts, we can construct their learning pathways, revealing
how their movement and conceptual understanding progress simultaneously

over time.
Task x ;

Feedback x 7

Taskx [/
Feedback x

Task x Level 3
Feedback x Effects

Taskx Level 2
Feedback x > Mass & Speed
Level 2 z
Expert ”~ Level 1b

- . Mass
D:\:g:}‘ng p Level 1a
i
> - Speed
Level 0

Level 0
Novice No Concept

Figure 3: The IL-PRO outcome space for robot acceleration.

Outcome Spaces for Automated Feedback and Task Delivery

The Robot Acceleration Module outcome space provides the basis for
automating personalization of the learning experience—i.e., automation of
selection and delivery of feedback messages and tasks. As described earlier,
the system’s current approach to personalization is closest to a micro-adaptive
process. IL-PRO uses telemetry, which includes collecting real-time data from
students’ motor skill performances in conjunction with feature engineering
and a machine-learned model to infer students’ position on the movement
solutions progress map. The system also transcribes speech data from student
responses to the system’s questions and then uses a pre-trained large language
model to infer students’ level of conceptual understanding. These parallel
processes yield the coordinates that position students’ performances on the
outcome space. With each location of the outcome space identified with a
predetermined set of feedback messages and tasks, the automated learning
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system can identify helpful feedback and provide task suggestions that are
relevant to the student’s current conceptual understanding and movement
solution(s).

DATA COLLECTION AND ANALYSIS FOR AUTOMATION

As the preceding description suggests, the IL-PRO system is instrumented to
collect multiple types of data that make it possible for the system to infer
student understanding and the adequacy of their movement solutions. The
system responds by suggesting a set of tips, posing reflective questions and
suggesting additional tasks for learning.

To accomplish this, the system collects multiple types of data that
include student verbal responses to the system’s questions, telemetry data
from the robotic arm’s movement and configurations, and user interaction
data tracking cursor movement and student selections within the digital
environment.

Students’ verbal responses are collected and transcribed in near real-time
using a cloud-based pipeline that is also part of the IL-PRO platform. General
telemetry hooks within the IL-PRO experience provide general situational
awareness. The date, timestamp, module number and activity details are
recorded alongside each student action in the system’s event log. This general
information is augmented by information about the current number of
attempts the student has made on a given task, the session number in which
those attempts were made, as well as the score or success-failure status of
each attempt.

Success-failure status is accompanied by more nuanced information about
students’ performances. Those nuanced assessments of student performances
are made using the given module’s progress maps described above and the IL-
PRO’s machine-learned and Al models. The cloud-based pipeline transcribes
students’ verbal responses, segments those responses and sends each segment
to the IL-PRO’s large language model (LLM). The LLM passes over each
segment and assigns a level for students’ conceptual understanding according
to the relevant progress map for the module.

When student movement solutions are also relevant, the IL-PRO cloud-
based pipeline routes the relevant logs to a set of scripts and machine
learning models. The cloud-based pipeline segments the relevant telemetry
logs and passes each segment through a set of machine learning models that
evaluate the student movement performance with reference to the relevant
progress variable. In some cases, such as the Robot Acceleration Module,
both students’ conceptual understanding as inferred by their verbal responses,
and the adequacy of their movement solutions, are used to determine the next
best task, tips and questions for learning. Additional details of the IL-PRO
pipeline are reported in Akbari Lori et al. (2025).

Sample Results

In what follows we present results from IL-PRO’s Robot Acceleration
Module for a single student who worked with the crazy driver task,
receiving feedback and additional learning tasks to support their conceptual
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understanding and their motor performances. Our summaries of the student
performances follow their inferred positions on the Module’s progress maps.

As demonstrated by their verbal response to the systematic probes, Student
A considered the effects of the ball’s speed on their ability to control it before
beginning the crazy driver task. But they were not yet considering the role
of the ball’s mass. When asked what aspects of the task were important to
consider before they began, Student A responded:

“So, the first thing that comes to mind when developing a strategy is
balancing the ball. So, Pm thinking about what would be the right
velocity to move the paddle to be able to complete the stages without
the ball falling off the table.”

IL-PRO thus identifies their understanding of the inertia concept with Level
1b — speed only.

By the time they were asked about their strategy for success working with
the third and final ball, the most massive ball, the student’s response reflected
a new consideration of both mass and weight, a Level 2 understanding of the
inertia concept:

“In order to be successful, I would start off by going slower...it’s a good
way to evaluate how heavy it [the ball] is as a start, and then once I see
how beavy it is, 'm going to adjust my speed and how fast I move my
bhand towards the letters eventually.”

Figure 4 summarizes a student’s progress matching their level of control
over the ball’s movement to that of the expert’s performance. Here, dynamic
time warping (DTW) (see Akbari Lor et al., 2025) is used to gauge the
similarity between the student performance and that of the expert user. High
scores reflect large differences between the performances. Scores decrease as
the performances become more similar. After multiple attempts with Ball 1,
the lightest ball, student performance approximate that of the expert with
multiple expert level performances with Ball 2, and Ball 3.

—&— Sphere 1
Sphere 2

—&— Sphere 3

=== Class A cut-off

1200 4 -=-- Class B cut-off

1400

1000 4

800

DTW Cost

600 1

400

200

T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
Attempt Index

Figure 4: Student’s proximity (DTW Cost) to the expert performance.
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Processing students’ verbal responses to the IL-PRO probes, and analyzing
students’ logfile data in near-real time, IL-PRO applies a late fusion approach
to integrate both types of performances to determine appropriate feedback
and additional tasks. Table 2 follows student’s transitions within the Module
4 outcome space, across their multiple attempts at the crazy driver task. As
suggested above, student’s movement solutions progress across their attempts
with Ball 1 and Ball 2, but their verbal responses suggest a static conceptual
understanding focused on speed only. By the end of the student’s attempts
with Ball 3, they begin considering the role of mass and speed. IL-PRO’s
feedback and task selection can flexibly account for the student’s changing
knowledge and skill.

Table 2: Student A performance in the crazy driver task.

Movement
Solution
Novice Developing Expert
Conceptual Level 3 Effects
Understanding
Level 2 Mass & Speed Ball 3

Level 1b Speed Only Ball 1 Ball 2
Level 1a Mass Only
Level 0 No Inertia

Concept

CONCLUSION

The IL-PRO learning system is an immersive VR environment that leverages
a current large language model with established machine learning approaches
to automate feedback and task selection. It uses a micro-adaptive approach
that operates in near real time to adjust instruction in response to students’
most recent performances. Progress maps guide IL-PRO’s learning content
and automated-system behavior, ensuring students receive relevant feedback
and tasks. By automating feedback and task delivery in a digital immersive
environment, IL-PRO provides a response to concerns over safety and
scalability of robotics instruction.
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