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ABSTRACT

The COVID-19 pandemic, which began in early 2020, highlighted the need for
technologies that can mitigate the risks of human exposure during infectious disease
outbreaks. Given the ongoing threat of emerging pandemics, it is crucial to develop
robotic systems that can be remotely operated by humans and eventually achieve
autonomous behavior through learning from such interactions. As a fundamental
study in this direction, this paper presents a method for enabling robots to
autonomously behave in environments. The proposed system integrates real-time
and past images from multiple cameras and learns human selection behavior
based on these images to enable autonomous decision-making. Experimental results
demonstrate that the proposed system achieves significantly longer autonomous
behaviour without collisions compared to the author’s previous approach.
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INTRODUCTION

We developed a system for autonomous robot behavior that learns from
current and one-step previous camera images together with human selection
behaviour.

The rapid global spread of COVID-19 since the end of January 2020
remains vivid in our memory. The World Health Organization (WHO)
officially declared the end of the public health emergency, which had
lasted for three years and three months, on May 5, 2023. However,
COVID-19 infections have not been completely eradicated, and the virus
continues to mutate. In today’s globalized society, the possibility of future
pandemics, including those caused by other infectious diseases, cannot
be ruled out. During the spread of COVID-19, remote work supported
by teleconferencing systems became part of the so-called “new normal.”
However, in domains that require interaction with the physical world, such as
caregiving, logistics, and activities involving travel, teleconferencing systems
alone are insufficient to address the associated challenges. Therefore, in such
domains, it is expected that embodied robots can be utilized as avatars. By
remotely operating these robots, it becomes possible to avoid direct human-
to-human contact while enabling more productive activities. However, if
robots lack autonomy and require constant remote operation, this imposes
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a significant burden on human operators. Moreover, enabling robots to
exhibit fully autonomous behavior from the outset is technically challenging,
especially in unfamiliar environments with high levels of uncertainty, such as
offices and homes. In recent years, extensive research has been conducted
on autonomous navigation for robots, drones, and vehicles. However,
many of these approaches rely not only on camera images but also on
various additional sensors such as infrared, radar, and ultrasonic sensors,
which increases system cost. In addition, the algorithms for autonomous
navigation also tend to become complex (Nieuwenhuisen, 2014). In addition,
conventional image-based navigation systems typically required a multi-stage
process. For example, a common approach involved first extracting features
from camera images (Vale, 2004), then constructing a map based on these
extracted features (Jeong, 2006), and finally determining the robot’s actions
according to predefined rules (Belker, 2002) (Kim, 2018). However, in such
multi-stage processes, each stage must be recalibrated when the environment
changes. Moreover, errors can occur at each stage, and these errors tend
to accumulate throughout the pipeline. Therefore, to address these issues,
several studies have explored the use of deep learning as an end-to-end
approach, where control outputs are generated directly from camera images
without intermediate steps (Kim, 2018) (Liu, 2017).

In this study, we organized the research objectives and conditions as a
fundamental investigation into the aforementioned issues, as follows:

« A bipedal robot is utilized with a view toward future realization of avatar
systems.

« Since the target environment is assumed to be a daily living space, only
passive sensors, similar to those used by humans, are employed. In
particular, this study focuses on utilizing multiple image inputs.

« The study targets autonomous walking, which is the most fundamental
form of autonomous behavior.

« The objective is to enable the robot to continuously walk autonomously
over a specified section without colliding with obstacles in the
environment.

Based on the above considerations, this study aims to develop a system
in which a bipedal robot can autonomously walk without colliding with
obstacles, using sensor data collected during human teleoperation as a first
step.

SYSTEM REQUIREMENT

In this chapter, we organize the system requirements.

First, when utilizing robot camera images in conjunction with human
operation commands, it is necessary to understand how and in what
situations the human operator controls the robot. Furthermore, in such cases,
it is also important to take into account the operator’s past control history.
In other words, it is essential to acquire not only the camera images and
the corresponding human operation commands as paired data, but also to
include the operator’s control history in the data format.
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In this study, the small bipedal robot equipped with two cameras is utilized.
We consider the use of both cameras and incorporate images from both into
the training data.

Furthermore, it is desirable for the robot to be able to move autonomously
without colliding with obstacles in its environment.

Accordingly, the system requirements for this study were organized as
follows:

1. During human operation, it must be possible to acquire the two camera
images and the robot control commands (log acquisition).

2. To consider historical information, past and current camera images
should be combined into a single image, and the corresponding robot
control commands must be obtained (utilization of camera image
history).

This paper focuses particularly on investigating the above requirements.
Furthermore, the following requirement was evaluated:

3. During autonomous behavior, the robot must be capable of behaving
without colliding with the environment (autonomous behavior decision).

SYSTEM IMPLEMENTATION AND EXPERIMENTATION

Figure 1 shows the system configuration, the robot used in the experiments,
and the GUI used by the user to operate the robot during the data acquisition
phase.

Figure 2 illustrates the experimental environment. Figure 3 presents the
method used to integrate the images from the two cameras. Figure 4 depicts
the learning architecture where a Support Vector Machine (SVM) is added
to the CNN. Finally, Table 1 presents an example of the confusion matrix
obtained when the SVM was trained as shown in Figure 4.

Implementation Related to Requirement (1) (Log Acquisition)

First, we describe the log acquisition component corresponding to
Requirement (1) within the developed system.

As shown in Figure 1(a), the robot used in the experiments was NAO6
(manufactured by SoftBank Robotics). Primitive actions were predefined for
the robot, including forward, right turn, left turn, and backward behavior.
The parameters for these were set such that forward and backward behaviors
each covered 10 cm, and right and left turns each rotated the robot by 10
degrees. NAOG is equipped with two cameras: one mounted on its forehead
and another at the mouth area. For sending control commands to the robot
and executing the training process, a notebook PC (FUJITSU LIFEBOOK
WA3/D3, CPU: Intel Core i7-9750H, Memory: 32 GB) was used, connected
to the NAOG6 via a Wi-Fi access point. The system was developed using the
Python programming language.

Additionally, as shown in Figure 1(b), a GUI was developed. The camera
mounted on the robot’s forehead is referred to as Camera 1, while the camera
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at the mouth area is referred to as Camera 2. In the experiments, the human
operator initially controlled the robot using this GUI.
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Figure 1: System architecture: Robot (NAO6) and GUI used in the experiment.

Implementation Related to Requirement (2) (Use of Camera Image
History)

Next, we describe the implementation of the camera image history utilization
corresponding to Requirement (2).

The experimental environment, as shown in Figure 2, was the authors’
university laboratory. In this environment, the robot was operated using the
GUI shown in Figure 1(b).

While the human operator controlled the robot, the system simultaneously
generated training data images as illustrated in Figure 3. The method for
creating these images is detailed below:

(1) First, when the operator clicks a control button on the GUI in
Figure 1(b), the system captures the two images from Camera 1 and
Camera 2 prior to the robot’s action. These two images are combined
side by side into a single wide-format image file and temporarily
saved.

(2) Similarly, when the operator clicks a control button for the next
step, the system captures and saves another side-by-side image from
Camera 1 and Camera 2.

At this point, the image obtained in step (1) is referred to as the “previous
step image,” while the image obtained in step (2) is referred to as the “current
image.”
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Then, the “previous step image” is concatenated below the “current
image,” creating a single image that integrates the four images: the current
and previous images from both Camera 1 and Camera 2.

This composite image has a resolution of 640x480 pixels and is hereafter
referred to as the “4-segment image.”

This 4-segment image, along with the robot behavior selected by the
human operator at the time the “current image” was captured, is saved as
a set of training data.

As described above, the behavior selected during the operation and the
corresponding 4-segment image created as shown in Figure 3 were saved as
training data
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Figure 3: 4-segment image creation methods.
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Regarding Training Data and System Configuration

For the training data, the operator manually controlled the robot to move
back and forth seven times between the area in front of the location shown
in Figure 2 (a) and the refrigerator shown in Figure 2(b), collecting the
4-segment images described above.

During the data collection process, the operator observed both the robot’s
camera images and its physical position to guide the operation. The robot
always started from nearly the same position and orientation near the front
of Figure 2(a), and turned right to reverse direction upon reaching the
refrigerator in Figure 2(b).

During autonomous behavior, the system also generated 4-segment images
using the method shown in Figure 3, and input them into the pre-trained
system to determine the robot’s behaviors.
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Figure 4: Structure of the training part with SVM added to convolutional neural
network.

However, using only the initial training data, the robot occasionally
collided with obstacles during autonomous behavior. Therefore, when a
collision occurred, the corresponding 4-segment images were analyzed and
training data were manually refined.

As a result, the final dataset comprised 1,107 images: 34 for backward
behavior, 490 for forward behavior, 366 for left turns, and 217 for right
turns.

Approximately 80% of the total data were used for training, with the
remaining 20% reserved for evaluation.
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Using the training data described above, fine-tuning was performed on
the pre-trained convolutional neural network, with the 4-segment images as
inputs and the corresponding human-selected actions as outputs.

In this study, the convolutional neural network used for fine-tuning was
MobileNetV2 (Sandler, 2018), which had been pre-trained on ImageNet
(Deng, 2009), a dataset for image recognition containing 1,000 classes.

In this experiment, we fine-tuned MobileNetV2 from block 13 onward,
as shown in Figure 4, using the aforementioned training data resized to
192 x 192 pixels (Motegi, 2023). As shown in Figure 4, after fine-tuning,
the fully connected layers used for behavior selection were removed from the
fine-tuned MobileNetV2, and the output from the average pooling layer was
used as the input to an SVM. The SVM was configured to output one of the
four behaviors: forward, right turn, left turn, or backward. For the SVM
implementation, the scikit-learn library in Python was utilized. Furthermore,
the 4-segment images created as training data were input into the system, and
the SVM parameters were optimized using the GridSearchCV function.

Table 1: Confusion matrix of SVM output for evaluation data.

Predicted Behaviors
Backward  Forward Left Turn Right Turn

Correct Backward 65.4% 0.0% 0.0% 34.6%
behaviors Forward 0.0% 95.2% 4.1% 0.8%
Left turn 0.3% 16.5% 83.2% 0.0%

Right turn = 1.6% 33.7% 7.1% 57.6%

The confusion matrix of the SVM obtained using the evaluation data
is shown in Table 1. In Table 1, the rows indicate the ground truth data,
and the columns represent the predicted results. The prediction accuracy
for the backward behavior was approximately 65.4%, with 34.6% of the
cases being misclassified as right turn. This misclassification is considered to
have occurred because the human operator often chose to perform backward
behavior even in situations where a right turn could have sufficed for obstacle
avoidance.

In contrast, the forward behavior showed a high prediction accuracy
of 95.2%. This is likely due to the fact that, the images taken when the
operator selected the forward behavior generally showed an open space
ahead compared to the images associated with other behaviors, making them
relatively easier to distinguish.

For the left turn behavior, the prediction accuracy was 83.2%, with 16.5%
of the cases being misclassified as forward. This may have been caused by
the presence of similar images in the training data where, in some cases, the
operator chose to make an early left turn, while in others, the robot continued
to move forward under similar visual conditions.

Regarding the right turn behavior, the prediction accuracy was 57.6%,
with 33.7% of the cases being misclassified as forward and 1.6% as
backward. This is likely because, in the experimental environment, obstacles
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were frequently located on the robot’s left side, leading the operator to often
preemptively execute a right turn even when forward behavior was possible.
Additionally, the operator sometimes used a combination of backward
and right turn maneuvers to avoid obstacles, which contributed to the
misclassification.

SYSTEM EVALUATION

Evaluation on Requirement (3) (Autonomous Operation Decision)

Figure 5 shows photographs taken during the robot’s autonomous behavior
experiments. Figure 6 indicates the shooting positions where the 4-segment
images were utilized, as depicted in Figure 5.

To evaluate the previously described requirement (3), the system was
trained using the 4-segment images shown in Figure 3, and subsequently
tested for autonomous behavior. The autonomous behavior was compared
under the following conditions, continuing until the robot either collided
with the environment, stopped due to battery depletion, or encountered other
issues:

(1) The system was trained using only the single camera image from the
camera mounted on the forehead of the NAOG6 robot, as in our previous study
(Motegi, 2023).

(2) The system was trained using the 4-segment images shown in Figure 3.

It should be noted that the image set used for condition (1) corresponds to
the upper-left quadrant of the 4-segment image shown in Figure 3, which is
the forehead camera image.

Figure 5 presents the experimental results of the robot’s autonomous
behavior under conditions (1) and (2). In each of the two columns, the
left column shows the camera images used by the robot when making
action decisions during autonomous behavior, while the right column shows
the images captured by an external camera for recording purposes. In
both conditions (1) and (2), the robot began autonomous behavior from
approximately the same position in front of the area shown in Figure 2(a).

In condition (1), as shown in Figure 5, the robot autonomously behaved
to the refrigerator from (1-1) to (1-4). Nevertheless, as shown in (1-5), it
continued to behave forward in front of the refrigerator and collided head-
on. Consequently, the experiment was terminated approximately 249 seconds
after the start of autonomous behavior.

On the other hand, in condition (2), as shown in (2-2) of Figure § and
Figure 6, the robot turned right in front of the refrigerator and behaved to
the side of the table. It was then able to return to the vicinity of the starting
point of autonomous behavior, as shown from (2-2) to (2-3). Subsequently,
it turned left at (2-3) and moved toward the front of the refrigerator as
shown in (2-4). Furthermore, in the area near the refrigerator shown in (2—4),
it turned right and behaved to (2-5). The robot eventually stopped near
(2-5) due to battery depletion. As a result, the experiment was terminated
approximately 1380 seconds after the start of autonomous behavior.
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Figure 6: Location of autonomous behavior experiment images.

From the above, it was confirmed that, compared to condition (1), the
learning based on the 4-segment images in condition (2) enabled the robot
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to perform long-duration autonomous behavior without colliding with the
environment.

CONCLUSION

As a fundamental study for realizing avatars in the real world, we examined
a system in which the robot autonomously behaves by learning the selected
behaviors and the 4-segment images shown in Figure 3, which are obtained
during human operation. This system was compared with a system trained
using only single-camera images in terms of the duration of autonomous
behavior before the robot collided with the environment.

In the case of the system trained with single-camera images, the robot
collided with the refrigerator approximately 249 seconds after starting
autonomous behavior. However, as proposed in this study, by utilizing the
4-segment images that incorporate the history of images from two cameras,
the robot was able to complete approximately two round trips in the
experimental environment over about 1380 seconds. Thus, it was confirmed
that the proposed learning method enabled longer-duration autonomous
behavior without collisions with the environment, compared to the single-
camera image-based system.
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