Human-Computer Interaction & Emerging Technologies, Vol. 195, 2025, 324-333 AH FE
https://doi.org/10.54941/ahfe1006251 |nternational

PyPro: Think in Code. Grow in Logic!

Elijah Ballou, Osita Odunze, Michael Adeleke, and Naja A. Mack

Morgan State University, Baltimore, MD 21251, USA

ABSTRACT

The accelerating demand for computing professionals, fueled by over 500,000 unfilled
positions and a projected need for 1.7 million more by 2030 underscores the urgent
need to rethink how computer science (CS) is introduced to learners, particularly
during the formative middle school years. Yet, barriers such as limited early exposure,
rigid curricula, and misconceptions about the field continue to hinder equitable
access and sustained engagement. This concept paper introduces PyPro, a next-
generation educational platform envisioned to transform the way students experience
programming. PyPro integrates adaptive learning pathways, a conversational Al tutor,
gamified challenges, and accessibility-first design to create a dynamic, inclusive,
and student-centered environment for Python instruction. Based on the principles
of personalized learning and interactive engagement, the platform reimagines CS
education as a responsive, exploratory journey rather than a static instructional
sequence. By continuously adapting to learner performance, offering on-demand
support, and aligning content with student interests and needs, PyPro aims to cultivate
computational confidence, deepen conceptual understanding, and promote long-term
interest in CS. This paper explores PyPro not just as a tool, but as a conceptual model
for how emerging technologies can reshape computer science education into a more
equitable, engaging, and empowering experience for all learners.

Keywords: Adaptive learning, Gamification, Personalization, Virtual Al tutor

INTRODUCTION

The tech industry’s rapid growth is threatened by a persistent shortage of
skilled professionals, with over 500,000 computing jobs currently unfilled
and demand expected to rise by 1.7 million roles by 2030. Yet many students
face barriers to entering the field, including limited early exposure, lack
of foundational education, and widespread misconceptions about computer
science (CS). CS is often introduced too late in K-12 education, limiting the
development of essential skills (Sullivan and Bers, 2019). Although after-
school programs and summer camps offer valuable technical instruction, they
often overlook the motivational and contextual factors needed for long-term
engagement. Media portrayals further reinforce stereotypes, framing CS as
inaccessible or suited only for a select few (Dou et al., 2020).

To address workforce demands, CS education must begin earlier, be
engaging and culturally relevant, and extend beyond traditional classrooms.
Intelligent Tutoring Systems (ITS) offer a promising solution by providing
personalized, adaptive instruction based on students’ prior knowledge and
learning preferences. ITS dynamically adjust teaching strategies in real-time,

© 2025. Published by AHFE Open Access. All rights reserved. 324


https://doi.org/10.54941/ahfe1006251

PyPro: Think in Code. Grow in Logic! 325

supporting student progress and improving outcomes, especially among
novice learners (Sarrafzadeh et al., 2008).

PyPro, a web-based platform, applies this model by offering interactive,
hands-on coding experiences tailored to K-12 learners. Its real-world
challenges, scalable lessons, and responsive feedback help students build
both confidence and competence. By supporting early and inclusive CS
engagement through adaptive tools, platforms like PyPro can help prepare
a more diverse and capable workforce for the future tech landscape.

BACKGROUND

Interactive Learning Environments in Computer Science Education

Interactive learning environments in computer science education are web-
based platforms designed to support programming instruction, especially in
remote and asynchronous settings. These environments enable students to
write, test, and compile code from any location while allowing instructors
to monitor progress and provide feedback (Choy and Ng, 2004). Features
such as automated grading, integrated analytics, and software agents help
address common challenges in distance learning by fostering interaction
and streamlining feedback. Platforms like Khan Academy, Replit, EdStem,
and Codio demonstrate how interactive tools enhance coding practice,
collaboration, and formative assessment, enriching the learning experience
in computer science (Morrison and DiSalvo, 2014; Engkamat, Yii, and Gran,
2023; Eyitayo, Botha, and van der Westhuizen, 2021; Allen-Perez et al.,
2025; Croft and England, 2019).

Each platform offers distinct strengths. Khan Academy provides JavaScript
tutorials and gamified elements but offers limited Python depth (Morrison
and DiSalvo, 2014). Replit is praised for its cloud-based, real-time
collaboration and intuitive design (Engkamat et al., 2023; Eyitayo et al.,
2021). EdStem blends an online IDE with discussion tools and automated
feedback to encourage collaborative learning (Allen-Perez et al., 2025),
while Codio supplies structured lessons and virtual environments to improve
learning outcomes (Croft and England, 2019). PyPro builds upon these
models by offering adaptive learning pathways, Al-driven feedback, and
gamified progression tailored to K12 learners, reflecting a shift toward more
personalized and student-centered computer science education.

Intelligent Tutoring Systems in Computer Science

Intelligent Tutoring Systems (ITS) expand on interactive learning
environments by providing adaptive, personalized instruction that simulates
one-on-one tutoring. These systems leverage Al and cognitive models to tailor
feedback and guidance based on individual student needs, promoting deeper
conceptual understanding and long-term retention. Unlike general-purpose
coding platforms, ITS focus on scaffolding problem-solving skills, offering
step-by-step hints, real-time feedback, and error analysis. Systems like CTAT,
JavaTutor, PythonTutor, ASK-ELLE, and CodeWorkout demonstrate various



326 Ballou et al.

approaches to intelligent tutoring in computer science, each with strengths
and limitations in content coverage, adaptability, and instructional depth.

CTAT enables educators to build tutors using example-tracing or cognitive
models without programming expertise, though creating model-based tutors
is resource-intensive (Aleven et al., 2016; Koedinger et al., 2004). JavaTutor
enhances Java learning through interactive, dialogue-based tutoring but
lacks cross-language support (Boyer et al., 2010; Sykes & Franek, 2003).
PythonTutor offers code visualization across multiple languages but lacks
adaptive feedback (Guo, 2013). ASK-ELLE provides structural code feedback
in Haskell but may constrain diverse solutions (Gerdes et al., 2017; Olmer,
Heeren, & Jeuring, 2014). CodeWorkout promotes fluency through drill-
based exercises in Java and Python, though it could be strengthened
with more open-ended challenges (Edwards & Murali, 2017). Collectively,
these ITS illustrate the potential and trade-offs of Al-driven instruction in
programming education.

Gamification

Gamification involves incorporating game-like elements into non-gaming
contexts to increase motivation, engagement, and skill acquisition. In
educational settings, particularly programming education, gamification
has proven effective in sustaining learner interest and promoting deeper
participation. Defined as “the process of game-thinking and game mechanics
to engage users and solve problems” (Zichermann, as cited in Arnold,
2014), this approach integrates elements such as points, badges, levels, and
interactive challenges to enhance learning experiences. As programming often
requires sustained focus and iterative problem-solving, gamified platforms
can provide the motivational scaffolding necessary to keep students engaged.

ClassCode and CodeCombat exemplify how gamification is applied in
programming education. ClassCode offers interactive tutorials and real-
time progress tracking to help students build JavaScript proficiency but
lacks adaptive feedback and debugging support, which can limit deeper
conceptual learning (Suzuki, Kato, & Yatani, 2020). CodeCombat presents
a gamified, level-based environment where students use Python to solve
progressively difficult challenges. It is particularly effective for learners
transitioning from block-based to text-based coding. However, it has limited
coverage of advanced programming concepts and requires a subscription and
stable internet connection, which may restrict its accessibility in underserved
regions (Choi & Choi, 2024). These tools highlight both the promise and the
limitations of gamified learning in programming education.

Virtual Pedigogical Agents

Al-powered virtual tutors and Pedagogical Agents as Learning Companions
(PALs) offer adaptive, personalized instruction and simulate peer-like
interactions to enhance learning. These agents provide cognitive and
emotional support, particularly valuable in distance and hybrid learning
contexts, by serving as scalable alternatives to direct teacher engagement.
To be effective, PALs must demonstrate authentic behaviors, appropriate



PyPro: Think in Code. Grow in Logic! 327

communication styles, and responsive feedback, which contribute to
perceived realism and learner trust (Yakubu et al., 2025; Kim, 2004).

Zhang et al. (2024) conducted a systematic review of pedagogical agents
in K-12 education, identifying critical design elements such as agent realism,
communication strategies, and instructional methods that drive student
motivation and engagement. The review also highlights implementation
challenges, including ethical risks, data privacy concerns, algorithmic bias,
and integration into traditional classrooms. In parallel, Mojjada et al.
(2024) examine the evolution of Al virtual tutors in higher education,
tracing the transition from rule-based systems to advanced tools leveraging
machine learning, natural language processing, and real-time analytics.
These systems offer benefits like 24/7 access and personalized feedback
but also face limitations in recognizing emotional cues, ensuring equitable
access, and maintaining human-centered learning in increasingly automated
environments.

Adaptive Learning

Adaptive learning integrates advanced technology with pedagogical strategies
to personalize education in both K-12 and higher education settings. These
systems dynamically adjust content, pacing, and feedback based on individual
learner performance, offering benefits such as accelerated learning, targeted
remediation, enhanced metacognitive skills, mastery-based progression, and
interactive engagement. Researchers increasingly recognize adaptive learning
as a dual innovation—both technological and instructional that supports
differentiated instruction and promotes deeper, student-centered learning
experiences (Mojjada et al., 2024).

The Intelligent Tutoring System for the Text Structure Strategy (ITSS)
exemplifies adaptive learning in K-12 literacy education. ITSS helps
struggling readers in grades 4-7 develop comprehension skills through tasks
such as identifying signal words, classifying text structures, and rewriting
passages, supported by pop-up hints and automated analysis. Studies report
gains of up to two grade levels in reading proficiency. However, its reliance
on a fixed sequence of tasks and static feedback limits adaptability to
novel learner errors (Atun, 2020). In mathematics, ASSISTments provides
middle school students with scaffolded hints and instant feedback, adjusting
problem difficulty in real time. This approach led to a 75% improvement
in standardized test scores compared to traditional homework (Roschelle,
Feng, Murphy, and Mason, 2016). Despite its success, its emphasis on routine
practice can limit creative exploration and problem-solving.

Emerging platforms like PyPro expand on these foundations by offering
adaptive support for programming education across age groups. Using
real- time learner data, PyPro reorganizes tasks and provides context-
sensitive hints tailored to student performance. Unlike systems focused
solely on accuracy or speed, PyPro encourages experimentation through
optional “quests,” promoting deeper conceptual understanding and building
confidence through iterative, discovery-based learning.



328 Ballou et al.

Personalization

Personalized learning tailors instruction to individual students’ needs,
interests, and learning preferences, promoting flexibility, differentiation,
and student agency. Supported by adaptive technologies and real-
time performance tracking, personalization has been shown to enhance
engagement and improve learning outcomes (Zia, 2024). As educational
systems seek scalable and inclusive strategies, personalization is emerging as
a central paradigm in both K-12 and higher education.

The SPARCS program exemplifies a personalized, problem-based
approach to integrating computer science into middle school education.
Designed to support teachers with limited computer science backgrounds,
SPARCS improved educator confidence, content knowledge, and
collaborative teaching practices. However, it encountered implementation
barriers, including high support demands, limited scalability, and insufficient
data on student outcomes (Siy et al., 2017). PyPro builds on this model by
offering modular lessons, scaffolded tools, and Al-driven feedback that adapt
in real time to student needs, creating a more scalable and data-informed
framework for personalized CS instruction.

Similarly, an intelligent tutoring system designed by Brad’ac et al. (2022)
uses expert systems and fuzzy logic to create personalized study plans for
English language learners on Moodle. It adapts to the prior knowledge and
sensory preferences of students using the VARK model. While innovative, the
system is constrained by Moodle’s limited adaptivity and the rigidity of rule-
based logic. PyPro addresses these limitations with machine learning refined
pathways, dynamic content delivery, and reduced instructor overhead. Its
modular infrastructure enables broader subject integration, real-time data
collection, and media-rich customization extending personalization beyond
static rules into responsive, learner-centered experiences.

System Overview

PyPro is a conceptual educational platform aimed at enhancing Python
programming instruction for middle school students through a dynamic,
inclusive, and student-centered learning environment. By incorporating
key elements such as gamification, adaptive learning, a virtual Al tutor,
accessibility, and personalized instruction, PyPro seeks to increase student
engagement, support diverse learning needs, and cultivate sustained interest
In computer science.

Adaptive Learning

PyPro reimagines adaptive learning by offering a dynamic and responsive
framework that personalizes programming education to the evolving needs
and abilities of each student. Moving beyond the limitations of a uniform
instructional path, PyPro introduces an intelligent system that adjusts in real
time, tailoring content delivery, pacing, and support to match individual
learner profiles. When students face difficulties, the platform intervenes
with scaffolded assistance ranging from contextual hints and step-by-step



PyPro: Think in Code. Grow in Logic! 329

walkthroughs to targeted practice exercises, creating an environment that
nurtures persistence, builds confidence and supports concept mastery.

PyPro Next Assignment

CodeKiddo

Act 4: Conditionals

Profile ID#: 0332

All Lessons
Resources

Challenges

GRS Current Assignment

Lesson 1
Need Help Welcome to your lesson on Conditionals

ick to Talk @);
Click to Text @)

y they

Begin

Figure 1: The PyPro student dashboard at a glance.

For learners who progress quickly, PyPro offers a suite of advanced
challenges that promote critical thinking, creative exploration, and higher-
order problem solving. These tasks are designed not only to maintain
engagement but to deepen students’ understanding through complexity and
experimentation. By continuously adapting to performance data, PyPro
ensures instruction remains appropriately rigorous and relevant, reinforcing
foundational skills while expanding advanced competencies.

This adaptive model fosters a growth-oriented learning culture where
every student regardless of their starting point is met with instruction that
is both supportive and ambitious. The result is a personalized, student-
driven experience that empowers learners to build lasting proficiency, develop
computational confidence, and engage deeply with the discipline of computer
science.

Virtual Al Tutor

PyPro’s virtual Al tutor transforms programming education by offering
interactive, adaptive, student-centered guidance. Learners engage in real-
time conversations to receive hints, clarify concepts, and tackle challenges
with tailored support. Acting as an evolving mentor, the tutor adapts its
strategies based on student growth, fostering autonomy, critical thinking,
and problem-solving skills. By emphasizing deep understanding over rote



330 Ballou et al.

learning, PyPro promotes a personalized, mastery-based approach that
evolves with each learner.

Gamification

Gamification is a central element of PyPro’s instructional design, strategically
employed to transform the process of learning to code into an engaging
and immersive experience. By embedding game-based mechanics such as
points, badges, and progress levels into the educational framework, PyPro
reframes programming from a routine academic task into a compelling,
interactive journey. Learners embark on coding ‘quests’, ascend leaderboards,
and earn achievements as they master core concepts, strengthening skills
through a progression of meaningful milestones. A distinguishing feature
of PyPro is its 3rd-person mini-gameplay, where students control avatars
navigating narrative-driven environments that demand real-time application
of programming logic, including loops, conditionals, and debugging.
This fusion of storytelling and problem-solving fosters deeper conceptual
retention. Moreover, features like daily practice streaks and unlockable
content cultivate consistent engagement by blending structured instruction
with elements of exploration and play. Collectively, these gamified strategies
sustain motivation, bolster confidence, and nurture long-term interest in
computer science.

Accessibility

PyPro is built on a foundation of accessibility and equity, ensuring that
every student, regardless of ability, background, or learning style, has a
meaningful opportunity to engage with coding. The platform features a
user friendly interface designed with universal design principles, offering
adjustable text sizes, high contrast themes, and text to speech functionality
to support visually impaired learners. For students with motor impairments,
PyPro includes alternative input methods such as keyboard navigation,
switch access, and voice commands, enabling smoother, more independent
interaction with the platform. Customizable pacing options empower
learners to move through material at a speed that suits their individual needs,
reducing anxiety and promoting mastery at every stage. Closed captions
and visual prompts support deaf and hard of hearing students, as well as
English language learners, ensuring that all content is accessible and clearly
communicated. By thoughtfully integrating these features, PyPro removes
barriers and creates a supportive, inclusive environment where all learners
can thrive, explore coding with confidence, and realize their full potential.

Personalization

Personalization is central to PyPro, creating meaningful, motivating learning
experiences tailored to individual interests, skill levels, and preferences.
Students can pursue guided learning paths or open-ended challenges in areas
like game development, chatbots, and creative coding. Personalized tutorials,
project-based challenges, and real-time progress tracking foster engagement,
while adaptive recommendations ensure students stay challenged without



PyPro: Think in Code. Grow in Logic! 331

overwhelm. By centering learning around the student, PyPro builds
autonomy, confidence, and long-term mastery.

CONCLUSION

In conclusion, PyPro represents a forward-thinking approach to Python
learning, combining adaptive learning, an interactive Al tutor, gamification,
and accessibility features to offer a truly engaging and inclusive educational
experience. As a proof of concept, the platform demonstrates the potential
of leveraging innovative tools to address the need for accessible coding
education, particularly for students from underrepresented backgrounds.
Looking forward, PyPro will continue to evolve with key updates. The
adaptive learning system will become even smarter, offering increasingly
personalized challenges that respond to each student’s unique learning
journey. The Al tutor will incorporate more advanced natural language
processing, enabling a more conversational and context-aware approach to
guiding students. New collaborative features will encourage teamwork by
allowing students to work together on projects, promoting peer learning
and the development of collaborative problem-solving skills. Additionally,
accessibility will be expanded with multi-language support and enhanced
assistive tools to ensure inclusivity for all learners.

To ensure that PyPro meets the real-world needs of both students and
educators, we will engage in a participatory design process. Feedback from
teachers and students will be incorporated during the development phases,
providing critical insights that will shape the evolution of the platform.
Furthermore, we will conduct a usability study to evaluate the effectiveness
of PyPro’s features and user experience, identifying areas for improvement
in terms of engagement, accessibility, and overall usability. This study will
help ensure that PyPro remains intuitive, effective, and inclusive, catering
to a diverse range of learning styles and needs. With continuous testing,
user feedback, and iterative development, PyPro will bridge the gap between
student interest in coding and long-term success in computer science.

REFERENCES

Aleven, V., McLaren, B. M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S.,
Ringenberg, M., & Koedinger, K. R. (2016). Example-tracing tutors: Intelligent
tutor development for non-programmers. International Journal of Artificial
Intelligence in Education, 26, 224-269.

Allen-Perez, G., Millan, L., Nghiem, B., Wu, K., Shah, A., & Soosai Raj, A. G. (2025).
An analysis of students’ testing processes in CS1. In Proceedings of the 56th ACM
Technical Symposium on Computer Science Education (Vol. 1, pp. 46-52). ACM.

Arnold, B. J. (2014). Gamification in education. Proceedings of the American Society
of Business and Behavioral Sciences, 21 (1), 32-39.

Atun, H. (2020). Intelligent tutoring systems (ITS) to improve reading
comprehension: A systematic review. Journal of Teacher Education and Lifelong
Learning, 2 (2), 77-89. Retrieved from https://dergipark.org.tr/en/pub/tell/issue/
58491/757329.


https://dergipark.org.tr/en/pub/tell/issue/58491/757329
https://dergipark.org.tr/en/pub/tell/issue/58491/757329

332 Ballou et al.

Boyer, K., Ha, E. Y., Phillips, R., Wallis, M., Vouk, M., & Lester, J. (2010). Dialogue
act modeling in a complex task-oriented domain. In Proceedings of the SIGDIAL
2010 Conference (pp. 297-305).

Brad’ad, V., Smolka, P., Kotyrba, M., & Prdek, T. (2022). Design of an intelligent
tutoring system to create a personalized study plan using expert systems. Applied
Sciences, 12 (12), 6236.

Choi, W. C., & Choi, L. C. (2024). Investigating the effect of the serious game
CodeCombat on cognitive load in Python programming education. In 2024 IEEE
World Engineering Education Conference (EDUNINE) (pp. 1-6). IEEE.

Choy, S.-O., & Ng, S.-C. (2004). An interactive learning environment for teaching
and learning of computer programming. In Proceedings of the IEEE International
Conference on Advanced Learning Technologies (pp. 848-849). IEEE.

Croft, D., & England, M. (2019). Computing with Codio at Coventry University:
Online virtual Linux boxes and automated formative feedback. In Proceedings of
the 3rd Conference on Computing Education Practice (pp. 1-4). ACM.

Dou, R., Bhutta, K., Ross, M., Kramer, L., & Thamotharan, V. (2020). The effects of
computer science stereotypes and interest on middle school boys’ career intentions.
ACM Transactions on Computing Education, 20 (3), 1-135.

Edwards, S. H., & Murali, K. P. (2017). CodeWorkout: Short programming exercises
with built-in data collection. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education (pp. 188-193).

Engkamat, A., Yii, M. L., & Gran, S. S. (2023). Replit: A simple approach to real-time
collaborative coding.

Eyitayo, O. (2021). Online compiler, IDE, interpreter, and REPL for multiple
programming languages.

Gerdes, A., Heeren, B., Jeuring, J., & Van Binsbergen, L. T. (2017). Ask-
Elle: An adaptable programming tutor for Haskell giving automated feedback.
International Journal of Artificial Intelligence in Education, 27, 65-100.

Guo, P. J. (2013). Online Python Tutor: Embeddable web-based program
visualization for CS education. In Proceedings of the 44th ACM Technical
Symposium on Computer Science Education (pp. 579-584).

Kim, Y. (2004). Pedagogical agents as learning companions: The effects of agent
affect and gender on student learning, interest, self-efficacy, and agent persona
(Doctoral dissertation, The Florida State University).

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M.
(2004). Opening the door to non-programmers: Authoring intelligent tutor
behavior by demonstration. In International Conference on Intelligent Tutoring
Systems (pp. 162-174). Springer.

Mojjada, H., Chand, N. G., Lakshmipriyanka, A., & Sravya, T. (2024). The evolution
of Al virtual tutors in modern higher education.

Morrison, B. B., & DiSalvo, B. (2014). Khan Academy gamifies computer science.
In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (pp. 39-44). ACM.

Nye, B. D., Graesser, A. C., & Hu, X. (2014). AutoTutor and family: A review of 17
years of natural language tutoring. International Journal of Artificial Intelligence
in Education, 24, 427-469.

Olmer, T., Heeren, B., & Jeuring, J. (2014). Evaluating Haskell expressions in a
tutoring environment. arXiv preprint arXiv:1412.4879.



PyPro: Think in Code. Grow in Logic! 333

Roschelle, ]J., Feng, M., Murphy, R. E, & Mason, C. A. (2016).
Online mathematics homework increases student achievement: A
randomized field trial of ASSISTments. AERA Open, 2 (4), 1-12.
https://doi.org/10.1177/2332858416673968

Rus, V., D’Mello, S., Hu, X., & Graesser, A. (2013). Recent advances in
conversational intelligent tutoring systems. Al Magazine, 34 (3), 42-54.

Sarrafzadeh, A., Alexander, S., Dadgostar, E, Fan, C., & Bigdeli, A. (2008). “How
do you know that I don’t understand?” A look at the future of intelligent tutoring
systems. Computers in Human Behavior, 24 (4), 1342-1363.

Siy, H., Dorn, B., Engelmann, C., Grandgenett, N., Reding, T., Youn, J.-H., &
Zhu, Q. (2017). SPARCS: A personalized problem-based learning approach for
developing successful computer science learning experiences in middle school. In
2017 IEEE International Conference on Electro Information Technology (EIT)
(pp. 611-616). IEEE.

Sullivan, A., & Bers, M. U. (2019). Computer science education in early childhood:
The case of Scratch Jr. Journal of Information Technology Education: Innovations
in Practice, 18, 113.

Suzuki, R., Kato, J., & Yatani, K. (2020). ClassCode: An interactive teaching and
learning environment for programming education in classrooms. arXiv preprint
arXiv:2001.08194.

Sykes, E. R., & Franek, FE (2003). An intelligent tutoring system prototype for
learning to program Java™. In Proceedings of the 3rd IEEE International
Conference on Advanced Technologies.

Yakubu, M. A., Sain, Z. H., Lawal, U. S., & Hakim, M. A. R. (2025). Students’
perceptions of artificial intelligence as a virtual tutor and self-efficacy in learning.
Indonesian Journal of Artificial Intelligence (IJAI), 1 (1), 1-11.

Zhang, S., Jaldi, C. D., Schroeder, N. L., LCopez, A. A., Gladstone, ]. R., & Heidig,
S. (2024). Pedagogical agent design for K-12 education: A systematic review.
Computers & Education, 1051635.

Zia, A. S. (2024). Personalized learning in K12 education: Strategies, challenges,
and future directions. Zeal Journal of Multidisciplinary Research, 1 (2), 32-38.


https://doi.org/10.1177/2332858416673968

	PyPro: Think in Code. Grow in Logic!
	INTRODUCTION
	BACKGROUND
	Interactive Learning Environments in Computer Science Education
	Intelligent Tutoring Systems in Computer Science
	Gamification
	Virtual Pedigogical Agents
	Adaptive Learning
	Personalization
	System Overview
	Adaptive Learning
	Virtual AI Tutor
	Gamification
	Accessibility
	Personalization
	CONCLUSION



