Human-Computer Interaction & Emerging Technologies, Vol. 195, 2025, 399-405 AH FE
https://doi.org/10.54941/ahfe1006257 |pternational

Object-Oriented Encapsulation-Based
Virtual Equipment Modeling for
Digital-Twin Production Systems

Fengyi Feng and Xiaojun Liu

School of Mechanical Engineering, Southeast University, Nanjing, China

ABSTRACT

As digital-twin technology becomes integral to smart manufacturing, the creation
of high-fidelity yet maintainable virtual equipment models is critical for effective
production-unit debugging and system-level coordination. This paper presents
an object-oriented encapsulation approach that leverages information-hiding and
interface-uniformity mechanisms to modularize device states, interfaces, and behavior
logic. By encapsulating each physical device within a self-contained class exposing
only standardized input/output methods, the proposed method reduces coupling
and enhances model reusability. We further introduce a hierarchical composition
strategy, enabling seamless aggregation from single devices to work-unit, production-
line, and workshop-level models. On top of this, we develop a semantic-signal
aggregation framework and event-triggering mechanism that automatically translate
low-level physical signals into discrete events for control and scheduling. A case
study of a riveting workstation demonstrates improvements in interface consistency,
modeling accuracy, and extensibility. The results confirm that our encapsulation-
based modeling method offers a portable, scalable, and easily maintainable solution
for digital-twin production systems, laying a solid foundation for advanced debugging
workflows and intelligent decision support.

Keywords: Digital twin, Virtual equipment, Object-oriented encapsulation, Production unit
composition, Semantic signal aggregation, Discrete event generation

INTRODUCTION

With the advancement of Industry 4.0, digital twin (DT) technology
has become a key enabler for smart manufacturing, offering a real-time
synchronized virtual representation of physical assets to support predictive
analytics, operational optimization, and system resilience (Grieves and
Vickers, 2017; Tao et al.,, 2019). However, in practical engineering
applications, building scalable and maintainable virtual models
remains challenging. Most virtual equipment models expose underlying
implementation details and device-specific logic, resulting in high inter-
module coupling and poor reusability (Lee et al., 2015; Fuller et al., 2020).
Moreover, the raw signals generated by physical sensors are often low-level
and continuous, lacking semantic clarity for higher-level reasoning and
event-driven control.

© 2025. Published by AHFE Open Access. All rights reserved. 399

https://doi.org/10.54941/ahfe1006257

400 Feng and Liu

Recent studies have further clarified the conceptual framework and
reference architectures for DT-driven intelligent manufacturing (Lu et al.,
2020), and have demonstrated practical frameworks for DT applications
in high-precision sectors such as aeroengine blade production (Zhang and
Zhu, 2019). Moreover, DT-driven cyber-physical systems (MCPS) have been
proposed to support parallel control and decentralized decision-making in
smart workshops under mass personalization paradigms (Leng et al., 2019).

To address these issues, this paper proposes an object-oriented modeling
method based on encapsulation. The approach introduces two key
mechanisms: information hiding and interface uniformity, which modularize
internal states, sensor/actuator interfaces, and behavior logic of virtual
devices. This reduces system complexity and enables plug-and-play reuse of
equipment models. Additionally, we construct a semantic signal aggregation
model and a rule-based event abstraction mechanism, allowing low-level
physical data to be converted into high-level discrete events that drive task
scheduling and logical inference.

Building on this, we design a multi-layer encapsulation framework,
supporting recursive composition from virtual devices to production units,
production lines, and entire workshops. A case study of a riveting
workstation is conducted to validate the proposed method’s effectiveness
in terms of modeling fidelity, interface consistency, and system scalability.
The results provide a foundation for deploying digital twins in complex
manufacturing environments and for supporting intelligent debugging and
decision-making processes.

OBJECT-ORIENTED ENCAPSULATION MODELING OF VIRTUAL
EQUIPMENT

In digital twin systems, virtual equipment must accurately reflect the
dynamic behavior and operational status of physical devices, respond
to external inputs in real time, and provide consistent feedback. Due
to the complexity and heterogeneity of physical equipment states and
communication protocols, a direct, unstructured representation would
hinder maintainability and scalability. Hence, adopting object-oriented
encapsulation is essential.

Virtual equipment models encapsulate key attributes, internal states, and
behaviors into self-contained classes that expose standardized input-output
interfaces. As shown in Table 1, a typical encapsulated virtual equipment
model consists of four fundamental components: internal state variables,
sensor data interfaces, actuator control interfaces, and behavioral logic
modules.

Table 1: Core components of an encapsulated virtual equipment model.

Component Description Example

Internal State Real-time operational Speed, position, temperature
parameters

Sensor Interface Input ports or methods for Pressure sensor, displacement
receiving sensor data sensor

Continued

Object-Oriented Encapsulation-Based Virtual Equipment Modeling 401

Table 1: Continued

Component Description Example
Actuator Interface Methods for controlling Start, stop, move, rivet
actuators
Behavioral Logic Internal rules or methods Execute next step upon
encoding control logic condition, signal on
threshold

CORE ENCAPSULATION MECHANISMS

The encapsulation framework relies on two key mechanisms: information
hiding and interface uniformity, which jointly support the modularity,
independence, and interoperability of virtual device models.

Information hiding isolates implementation details—such as state
variables, algorithms, and control logic—from external access. Internal
attributes like sensor values or temporary states are exposed only through
public methods (e.g., getStatus()), ensuring external modules are decoupled
from internal data structures. Behavioral logic (e.g., start(), stop()) is
encapsulated within the class, allowing changes without affecting dependent
modules.

Interface uniformity mandates standardized functional interfaces for all
device classes. For example, all sensors implement readSensor(), while
all actuators support executeCommand() or start()/stop() methods. This
consistency enables plug-and-play integration, simplifies system calls, and
supports model reuse and automation.

Together, these two mechanisms provide both encapsulation boundaries
and standardized communication channels, ensuring scalability, reusability,
and maintainability in complex digital twin systems.

ENCAPSULATION WORKFLOW FOR VIRTUAL EQUIPMENT

The development of an encapsulated virtual equipment model generally
follows a top-down modeling workflow, which ensures structural clarity,
behavioral accuracy, and interface standardization throughout the process:

Step 1: Analyze the structure and function of the physical device.

This step involves systematic identification of the device’s subcomponents
(e.g., sensors, actuators, control elements) and clarification of their roles
and dynamic characteristics. It establishes the foundation for accurate virtual
representation.

Step 2: Define internal states and key attributes.

Based on functional analysis, core state variables—such as position,
pressure, temperature, or operation flags—are defined to reflect the physical
equipment’s status under various working conditions. These variables will be
encapsulated as internal private fields.

Step 3: Design standardized interfaces.

Sensor inputs and actuator commands are abstracted into standardized
methods (e.g.), providing a clear and consistent communication interface.
This step ensures that each device can interact seamlessly with others through
uniform input/output channels. readSensor()executeCommand).

402 Feng and Liu

Step 4: Encapsulate behavioral logic.

The equipment’s control logic—such as motion sequences, condition
checks, or output triggers—is implemented as internal methods of the
virtual class. These methods remain hidden from external modules, enforcing
modular separation and improving maintainability.

Step 5: Validate and iteratively refine the model.

The virtual model is tested against simulation results or real-device data to
verify its correctness in terms of state evolution and response accuracy. Model
parameters and behavioral rules are adjusted iteratively to ensure fidelity and
robustness under different scenarios.

PRODUCTION UNIT COMPOSITION AND HIERARCHICAL
ENCAPSULATION

To enable structured and scalable digital twin modeling, the encapsulated
virtual equipment models must be further abstracted and composed into
higher-level production entities. This section introduces the composition of
production units and hierarchical encapsulation strategies, which extend the
object-oriented encapsulation principle from individual devices to complete
production lines and workshops.

At the production unit level, multiple encapsulated virtual devices
are integrated to accomplish a defined functional task—such as riveting,
assembly, or inspection—through modular composition. Each unit exposes
abstract functional interfaces to the external system, such as startWorkUnit(),
stopWorkUnit(), and getUnitStatus(). These interfaces focus on the overall
functional boundaries of the production unit, rather than exposing individual
device operations. For instance, in a riveting workstation scenario, the entire
unit encapsulates devices like the fixture controller, riveting machine, and
conveyor, with the goal of executing a complete “riveting task” without
revealing the internal coordination details.

Internally, these virtual devices interact through well-defined control
sequences and data exchange mechanisms. For example, the fixture
controller first performs clamping and alignment; the riveting machine
then executes the pressing action; and finally, the conveyor transfers
the workpiece to the next station. These interactions are coordinated by
an internal management class—WorkUnitController—which encapsulates
execution logic, device invocation order, and exception handling routines.
This controller governs the process flow and synchronizes the submodules
based on event notifications and interface calls, ensuring that the entire unit
behaves as a cohesive, reusable module. External systems can invoke the unit
without needing to manage the detailed internal device dependencies.

Building on production unit composition, hierarchical encapsulation
further abstracts and aggregates multiple units into higher-level
organizational structures. For example, several production units can be
encapsulated into a ProductionLine model, which in turn may be integrated
into a Workshop model representing a full manufacturing section. Each
level exposes only its functional control interfaces, such as startLine()
or getLineStatus(), while hiding the internal composition of subordinate

Object-Oriented Encapsulation-Based Virtual Equipment Modeling 403

units. This recursive abstraction structure ensures that system designers and
controllers can operate at varying levels of granularity, from managing single
devices to orchestrating entire production lines, without being burdened by
low-level detail.

This layered encapsulation strategy forms the foundation for modular,
maintainable, and large-scale digital twin modeling in real-world
manufacturing environments.

SEMANTIC SIGNAL AGGREGATION AND EVENT ABSTRACTION

Raw sensor data in digital twin environments are often noisy and
semantically weak. We propose a method to aggregate low-level signals into
meaningful semantic indicators and convert them into discrete events for
system-level processing.

Within each virtual device, raw signals are filtered, classified, and fused
according to predefined rules and operational context. For instance, when the
displacement reaches a threshold and the pressure exceeds a limit, the system
recognizes the semantic state “Riveting Completed.” This high-level semantic
signal is then monitored by an internal rule engine. When conditions are met,
the device emits standardized events (e.g., RIVET_DONE) with timestamps
and metadata. These events drive upper-level control logic without exposing
signal-level complexities.

This mechanism enables the use of event-driven architectures for digital
twin-based virtual commissioning, improving system responsiveness, logic
clarity, and scalability.

CASE STUDY: VIRTUAL EQUIPMENT MODELING OF A RIVETING
WORKSTATION

To validate the proposed encapsulation-based modeling method, we
conducted a full-scale implementation of a virtual model for a typical
industrial riveting workstation. The physical workstation consists of three
main components: a hydraulic riveting machine, a fixture controller, and a
conveyor mechanism. These devices collaboratively execute a riveting task
that involves workpiece clamping, pressing, and part transfer.

As shown in Figure 1, the riveting machine is modeled as a virtual
equipment class named RivetMachine, which encapsulates core components
such as the pressure sensor, displacement sensor, hydraulic cylinder,
riveting head, and clamping fixture. Key internal states—including real-
time pressure and displacement—are stored as private attributes. Sensor
interfaces such as readPressure() and readDisplacement(), and actuator
methods like startRivet() and stopRivet() are defined as standardized public
interfaces. Within the method startRivet(), behavioral logic is embedded to
continuously monitor sensor data and evaluate whether both the pressure
and displacement have reached predefined thresholds. Once these conditions
are satisfied, the device automatically updates its internal state and emits a
semantic event RIVET_DONE to the upper-level controller.

404 Feng and Liu
s s Y e s s N['y s A
Physical Device Components Functional Abstraction Virtual Equipment
____________ Encapsulation
/JI Real-Time ! P
| Pressur
1 1 Pressure Value_ | RivetMachine
e e
____JI Real-Time | -pressure
Displacement
| 1 Y = 2
[SR] displacement
________ - -eylinderPosition
IEEsnannEasas M -isClamped i
Start/Stoj ! P
1 P
|___Riveting ™
™ | +initiateClamp()
\ll “Cylinder Extend -l/
| Retact | +1 eieaseC‘Ichmp(f‘ I
+ extendCyvlinder()
e e e O
\} Riveting Action | +retractCylinder()
Il____T_" o ! +startRivet()
1
____________ ! +stopRiv
\\I Fixture Close/ | !_____;"_D‘E_I:g_!(_}____:
o . .9 S
Riveting Machine

-

Figure 1: Encapsulation process of the riveting machine virtual equipment.

s ™
Riveting Workstation Unit
WorkUnitController
'i
: L 1 Exterhal Trigger
H +startWorkUnit() t
| e 1 Exterpal Trigger
I +stopWorkUnit() " r .
1 i} : | Exterhal Trigger
: +getUnitStatus() T
[P TRE RS AL ST PRE LI AL LAt FRE L }
Call Sequence and
Logic Control
SIS _l _________ 3 S, TR
: Fixture : I Riveting :: Conveyor :
| Controller || _ Machine _1j Mechanism |
\ J

Figure 2: Schematic diagram of the riveting unit composition.

To extend beyond the single device, we encapsulate the entire workstation
as a production unit model named RivetWorkUnit. As illustrated in Figure 2,
this unit consists of three virtual device submodules (the fixture controller,
riveting machine, and conveyor), coordinated by a central management class
called WorkUnitController. The controller governs execution logic through
event-driven coordination. Upon invocation of the startWorkUnit() method,
the system initiates the clamping process via the fixture controller. Once the
clamping is confirmed via the event CLAMP_DONE, the riveting machine
is triggered to execute the riveting task. After the RIVET_DONE event is
received, the conveyor is activated to transfer the completed part to the
next station. Throughout the process, the controller also handles abnormal
conditions through fault signals (FAULT) and can terminate operations via
stopWorkUnit() in response to system-level exceptions.

Object-Oriented Encapsulation-Based Virtual Equipment Modeling 405

This case demonstrates that the proposed encapsulated modeling method
effectively supports not only high-fidelity device simulation, but also
modular unit composition and logic coordination. The model was
calibrated iteratively against real equipment data to ensure accuracy, and
experiments showed that the encapsulated structure allows new equipment
to be substituted or reconfigured without altering upper-level coordination
logic—demonstrating its high reusability and maintainability in real-world
applications.

CONCLUSION

This paper proposes an object-oriented encapsulation approach to virtual
equipment modeling in digital-twin production systems, addressing the
issues of high coupling, poor scalability, and difficulties in bridging low-
level signals to high-level logic. Leveraging the mechanisms of information
hiding and interface uniformity, our method modularly encapsulates device
states, interfaces, and internal logic, thereby effectively reducing inter-module
dependencies and enhancing flexibility and maintainability. Additionally, we
introduce a semantic signal aggregation and event abstraction framework,
transforming raw sensor data into high-level semantic signals and discrete
events, significantly improving the logical reasoning and scheduling
capability within digital-twin systems. A comprehensive case study of a
riveting workstation confirmed the practicality of the proposed method in
real-world manufacturing contexts, demonstrating high fidelity in equipment
simulation, rapid device integration, and excellent scalability. Future research
directions include validating and refining the proposed method in more
complex multi-unit and cross-platform digital-twin scenarios, as well as
exploring automated encapsulation modeling and event-rule generation
techniques to enhance generality and intelligence.

REFERENCES

Fuller, A., Fan, Z., Day, C. & Barlow, C. 2020. Digital twin: Enabling technologies,
challenges and open research. IEEE access, 8, 108952-108971.

Grieves, M. & Vickers, J. 2017. Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. Transdisciplinary perspectives on complex
systems: New findings and approaches, 85-113.

Lee, J., Bagheri, B. & Kao, H.-A. 2015. A cyber-physical systems architecture for
industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.

Leng, J. W., Zhang, H., Yan, D. X., Liu, Q., Chen, X. & Zhang, D. 2019. Digital
twin-driven manufacturing cyber-physical system for parallel controlling of smart
workshop. Journal of Ambient Intelligence and Humanized Computing, 10,
1155-1166.

Lu, Y. Q., Liu, C., Wang, K. I. K., Huang, H. Y. & Xu, X. 2020. Digital Twin-driven
smart manufacturing: Connotation, reference model, applications and research
issues. Robotics and Computer-Integrated Manufacturing, 61.

Tao, F., Zhang, M. & Nee, A. Y. C. 2019. Digital twin driven smart manufacturing,
Academic press.

Zhang, X. Q. & Zhu, W. H. 2019. Application framework of digital twin-
driven product smart manufacturing system: A case study of aeroengine blade
manufacturing. International Journal of Advanced Robotic Systems, 16.

	Object-Oriented Encapsulation-Based Virtual Equipment Modeling for Digital-Twin Production Systems
	INTRODUCTION
	OBJECT-ORIENTED ENCAPSULATION MODELING OF VIRTUAL EQUIPMENT
	CORE ENCAPSULATION MECHANISMS
	ENCAPSULATION WORKFLOW FOR VIRTUAL EQUIPMENT
	PRODUCTION UNIT COMPOSITION AND HIERARCHICAL ENCAPSULATION
	SEMANTIC SIGNAL AGGREGATION AND EVENT ABSTRACTION
	CASE STUDY: VIRTUAL EQUIPMENT MODELING OF A RIVETING WORKSTATION
	CONCLUSION

