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ABSTRACT

Extended-Reality (XR) technologies promise to enhance human-robot interaction (HRI)
by offering intuitive spatial interfaces and immersive input. However, traditional
evaluation methods, such as task completion time, error rates, or NASA-TLX
often obscure where cognitive and physical demands arise or are reduced within
the interaction process. This study conducts a cognitive workflow analysis of XR
interfaces by integrating established methodologies: Goal-Directed Task Analysis
(GDTA), Norman’s Seven Stages of Action, and Applied Cognitive Task Analysis
(ACTA). These methods collectively trace how interface design affects user cognition,
from mission goals to task-level interactions, revealing specific gulfs of execution and
evaluation. We apply this approach to compare two XR interface types: a grid-based
menu and spatial affordance-based pop-ups, within an emergency-response scenario
using Microsoft HoloLens 2. The analysis uncovers hidden cognitive challenges, such
as inefficient visual search and occlusion issues, often missed by conventional metrics.
The findings offer XR designers actionable insights into usability challenges and
demonstrate how cognitive analysis can guide more intuitive interface development.

Keywords: Human-robot interaction (HRI), Multi-robot system (MRS), Cognitive task analysis
(CTA), Extended reality (XR)

INTRODUCTION

Extended-Reality (XR), which encompasses augmented, virtual, and mixed
realities, has emerged as a transformative platform for enhancing human—
robot interaction (HRI). By spatially aligning virtual information with
physical environments, XR interfaces promise significant improvements in
situational awareness, spatial reasoning, and reduced cognitive workload
compared to traditional 2D displays (Chen et al., 2024; Roldan et al., 2017).
These advantages are particularly valuable in complex, time-critical domains
such as search-and-rescue, infrastructure maintenance, and defense, where

operators must coordinate multiple heterogeneous robots (Roldan et al.,
2017).
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Despite XR’s potential, substantial limitations persist in real-world
deployments. Operators often experience cognitive overload even when
supervising a relatively small number of robots, typically not more than
three, beyond which performance sharply declines due to increased visual
complexity and interaction demands (Wang et al., 2025). Although recent
advancements such as motion predictive interfaces (Gamage et al., 2021),
gazed-based menu interaction (Ahn et al., 2021), multimodal interactions
(Shi et al., 2023), and haptic feedback (Kudry & Cohen, 2023) aim to
improve usability, they are typically evaluated using outcome-based metrics
such as task completion time or NASA-TLX scores (Chang & Hayes, 2024).
These metrics, while useful, do not reveal where or how interaction design
affects user cognition during task execution. Studies such as AR teleoperation
(Walker et al., 2019), data visualization platform (Nafis et al., 2025), and
XR for HRI (Szafir, 2019), attempted to clarify these mental and physical
challenges using Norman’s gulf of execution and evaluation concept, but
remain incomplete in providing comprehensive insight.

Thus, the purpose of this study is to conduct a cognitive workflow analysis
of XR interfaces by integrating established methodologies: Goal-Directed
Task Analysis (GDTA), Norman’s Seven Stages of Action, and Applied
Cognitive Task Analysis (ACTA) to clarify how interface design influences
user cognition and task performance. GDTA decomposes high-level mission
goals into sub-goals and decision points (Endsley et al., 2003), Norman’s
Seven Stages of Action highlights the “gulfs” between user intentions and
system feedback (Norman, 1986), and ACTA identifies workload-intensive
involved (Militello & Hutton, 1998). This study applied to a multi-robot
emergency-response scenario using HoloLens 2 on grid-based and object-
affordance-based interfaces.

The implications of present study are for the design and evaluation of
XR interfaces in human-robot interaction. By integrating GDTA, ACTA,
and Norman’s Seven Stages of Action, it demonstrates how cognitive and
physical workload can be systematically traced from mission-level goals to
task-level actions. This approach enables early-stage interface evaluation
without extensive user testing, offering designers a rigorous means to identify
usability challenges.

METHODOLOGY
Participants

Two subject matter experts (SMEs) participated in the study. Participant 1
(P1), a 27-year-old male, has five years of experience in designing extended
reality interfaces for HRI. Participant 2 (P2), a 37-year-old female, has four
years of experience in developing mixed reality systems. Both were members
of the development team responsible for the interfaces evaluated in this study.

Task

Participants interacted with two mixed reality interfaces intended for a
simulated emergency response mission.
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Scenario: A three-room virtual building contained four active fires, two fire
extinguishers, three first aid kits, and three survivors (Figure 1a). A legged
ground robot could carry and actuate extinguishers, while a drone could
transport kits. A mission brief stated: “Extinguish all fires and deliver first
aid kits to all survivors. Each extinguisher may be used only twice.”

e - " Robot Commands
Selected Robot:
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Figure 1: (a) Simulated emergency response scenario in mixed reality; (b) grid-based
command interface; (c) object-affordance-based command interface appears when
robot waypoint virtual object collides with interactable objects.

Stimulus

Two types of interfaces were used as stimulus in this study: (1) Grid-based
command interface (Figure 1b): A static floating panel listing twelve robot
actions (e.g., Move, Pick, Drop, Extinguish, etc.), requiring operators to select
a robot, position a robot waypoint and choose actions from the menu. The
panel remained fixed on the left side of the operator’s field of view. (2) Object-
affordance-based interface (Figure 1c): When a robot waypoint contacted an
actionable object, an object-affordance menu popped up above it, displaying
only the commands valid for that object. This emphasized spatial affordances
and reduced menu-search load.

Both control interfaces shared an identical situational-awareness layer that
rendered mission brief, accessible at any time during the trial, real-time
positional updates and status of robots (e.g. moving to a goal, goal reached)
and objects (e.g. being picked up, dropped, or extinguished by a robot)
as spatial holograms over a resizable occupancy grid map of the building
(Figure 1a).

Apparatus

The application ran on a workstation equipped with an Intel(R) Core(TM)
19-12900 processor and an NVIDIA GeForce RTX 4070 GPU with 12 GB of
VRAM. The robot control and simulation stack were hosted on a Hyper-
V virtual machine running Ubuntu 20.04 with ROS Noetic. Multi-robot
navigation was simulated using the TurtleBot fake node with a preconfigured
occupancy grid map to emulate robot localization and path planning.
Communication between Unity and ROS platform was established using
the ROS-Unity TCP Connector, enabling real-time bidirectional exchange
of robot status, goals, and control signals.
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All visualization and interaction tasks were conducted using the Microsoft
HoloLens 2 head-mounted display, running a custom-built mixed reality
(MR) environment (Yu, 2022) developed in Unity (2021.3 LTS). The
application was built using the Microsoft Mixed Reality Toolkit 3 (MRTK3),
which supported spatial mapping, hand gesture tracking, and interactive
holographic Ul components. Users interacted with the MR interface using
standard HoloLens 2 mid-air gestures, including poke, pinch, and pinch-
and-drag, enabling both near and far interactions with virtual elements.
The system rendered real-time overlays of environmental geometry, robot
positions, and status information.

Procedure

Participants were briefed on mission objectives, operational constraints,
robot capabilities, and control mechanisms for both interfaces. The session
also covered GDTA task decomposition, symbolic annotation for Norman’s
Seven Stages of Action, and the cognitive demand table. Each participant
then completed a 10-minute practice session with both interfaces to
ensure baseline familiarity. During formal trials, they executed the mission
scenario three times per interface, presented in a pseudorandom sequence
to reduce learning effects. Afterward, participants independently created
GDTA and Norman cycle diagrams and analyzed cognitive demands, which
were compiled into cognitive demand tables. Individual data were then
consolidated to produce the final diagrams and demand tables used for
analysis.

Measurement

Cognitive workload was assessed using a three-layer analytic protocol
integrating GDTA (Goal-Directed Task Analysis), an annotated application
of Norman’s Seven Stages of Action, and ACTA’s Cognitive Demand Table.

GDTA: Mission-Level Decomposition

Following GDTA methodology (Endsley et al., 2003), the mission-level goal
was decomposed into a hierarchy of cognitive subgoals. Each subgoal was
annotated with situation-awareness (SA) requirements and decision points.
Decomposition proceeded until each leaf node represented an operational
goal which defined as a desired system state independent of specific interfaces
or robot capabilities. Operational goals were intentionally verb-free to avoid
biasing toward particular control actions, ensuring the analysis remains valid
across varying levels of automation or interface design.

Norman’s Seven Stages of Action Cycle With Symbolic Notation

Each operational goal was realised through one or more interaction cycles
model using Norman’s Seven Stages of Action (Norman, 1986), annotated
with symbolic variables (G, I, M, V, S) representing goal, intention,
control mechanisms, interface variables, and system state, respectively. The
description of each stage is explained in Table 1. Subscripts distinguished
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psychological (i.e. Mg, Vg from physical (i.e. My, Vi) processes, enabling
fine-grained workload tracing.

The number of cycles required to complete an operational goal depended
on the system’s autonomy and interface design: high-autonomy systems may
complete compound commands in a single cycle, while lower-autonomy
systems require multiple micro-managed interaction cycles. The GDTA
structure remained constant, while the Norman-layer realization adapted
accordingly maintaining a clear separation between goal structure and
interface-dependent execution.

ACTA: Cognitive Demand Table

The Cognitive Demand Table was adapted from the Applied Cognitive
Task Analysis (ACTA) framework (Militello & Hutton, 1998), summarizing
GDTA and Norman’s seven stages effort perceived as demanding, their
contributing factors, common errors, and coping strategies.

Table 1: Norman'’s seven stages definition.

Stage Symbolic Description
Expression
N1. Perception V¢ — Vs and/or Translation of interface variables V
S¢ — Ss or system state S into psychological
description via sensorimotor

afferent inputs (such as visual,
audio, haptic, etc.).

N2. Interpretation Vs, S, Translation of the perceived inputs
(perception) (Situation awareness level 1) into
— S meanings relevant to the goal

(comprehension) (Situation awareness level 2)
(Endsley et al., 2003).

N3. Evaluation S; = Gg? Evaluation if the system state S has
met the interaction goal G.

N4. Interaction Gs Interaction goal G is psychological

goal formation description arises from comparing

system state S and a GDTA
operational goal If the operational
goal is met, exit this interaction
cycle and fulfil other operational
goals until the mission goal is met.
Otherwise, form new interaction
goal G to fulfil the operational goal.

NS5. Intention formation I, =S -Gs Intention 1, is also a psychological
description,  surfaced as the
mismatch of the current system
state S and interaction goal G.

Continued
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Table 1: Continued

Stage Symbolic Description
Expression
N6. Action specification I, — M Translation of the psychological
description  of intention into
psychological description of

actions based on interface’s control
mechanisms M. A single intention
may involve interactions with
multiple control mechanisms. This
stage requires an understanding of
the casual relationships between the
control mechanisms M, interface
variable V, and the resulting
system state S, as described by:
Vi = f(M;) and S5 = h(V,).

N7. Action execution M; — Mg Translation  of  psychological
description of actions into physical
actions on control mechanisms M
via sensorimotor efferent outputs
(such as gaze, hand, body, speech,
etc.).

Note: Subscript s and f denote the psychological and physical aspects of the variable, respectively.

RESULT

The GDTA diagram (Figure 2) structures the ultimate mission goal GO
(stabilize the emergency site) into two principal cognitive goals: G1
(mitigation of fire hazards) and G2 (provision of medical aid). Each branch
terminates in operational goals that articulate technology-independent
desired system states: G1.1 (a robot is equipped with a functional
extinguisher), G1.2 (a fire is extinguished), G2.1 (a robot carries a first-
aid kit), and G2.2 (a survivor has received the kit). These operational
goals articulate desired outcomes rather than interface-specific commands,
ensuring analytical validity across variations in interface design or system
autonomy.

To fulfil each operational goal, the operator first observes the system state
S either through the interface or directly from the physical environment,
corresponding to Norman’s gulf of evaluation (see Figure 3, stages N1-N3).
The gap between the system state and the desired operational goal defines
an interaction goal G (stage N4). For example, if the operational goal is
G1.1—“Robot is equipped with a functional extinguisher”—but the system
state shows that “Robot is carrying a depleted extinguisher,” then the initial
interaction goal G is “Robot drops the unusable extinguisher.” Once this
goal is accomplished through Norman’s seven stages cycle, the system state
updates to “Robot is not equipped with a functional extinguisher and is not
near one.” Subsequent interaction goals then become “move to a functional
extinguisher” followed by “pick it up”.
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[ GO Stabilize emergency site ]
I

« Whatis the current distribution and severity of hazards and casualties?

* Which hazard should be addressed next to maximise overall safety?

+ Do available robots and supplies suffice forthe next action?

+ Locations & intensities of fires « Extinguisher/kit inventory
* Locations & conditions of survivors * Time and environmental
* Robot capability/status list constraints
[ G1Mitigate fire hazard ] [ G2 Provide medical aid ]
I [
* Which fireis highest-priority now? « Which survivor still lacks a kit?
* Which robot should get which extinguisher for which fire for quickest * Which equipped robot can deliver quickest?
suppression?
+ Locations & intensities of fires * Locations & conditionsof survivors
+ Locations of functional extinguishers + Locations of kits
« Locations & status of capable robots * Locations & status of capable robots
« Traveltimes / obstacles « Traveltimes / obstacles
I I
[ ] [ ]
G11 Ropot ' eq‘ulppved with G1.2 Fire jis extinguished G2.1 Robot carries first-aid kit G2.2 Survivor k has received kit
functional extinguisher
1 [ 1 1
* Which robot should fetch an * Which equipped robot should * Which robot should fetch akit? * Which equipped robotshould
extinguisher? tackle fire j? * Which kit is most accessible? service survivor k
* Which extinguisheris most * Whatwaypoint/path should be * Whatwaypoint/path ensures
accessible? issued for quickest suppression? fastest safe delivery?
* Isthe extinguisher functional?
T
* Robotlocations & task load & * Location of firej * Robot locations & task load & * Location of survivork
capabilities « Location of equipped-robots capabilities « Location of equipped-robots
* Extinguisher locations * Traveltimes / obstacles * Kitlocations * Traveltimes / obstacles
+ Traveltimes / obstacles + Traveltimes / obstacles
« Extinguisherfill levels

Figure 2: Goal-direct task analysis (GDTA) diagram.

[[ G1.1 Robot is equipped ][

3 L G1.2 Fire j is extinguished G2.1 Robot carries first-aid kit G2.2 Survivor k has received kit
'with functional extinguisher

GDTA operational goals

N4. Interaction Goal Formation: G
Comparing system state S with GDTA operational goal
IF Operational goal is met = exit this interaction cycle & fulfil other
operational goals until the mission goal is met
ELSE
Forming interaction goal G, as the following examples
* Navigate robot to target (selected example)
= Command robot to manipulate action on target

e ~ s

N5. Intention Formation: [, =5, — G N3. Evaluation: §¢ = G¢?
552 “Robot is not at the target.” Since S # G , intention I is: Evaluate if system state § = interaction goal G?
I;: Move robot to target Is the robot moving to or already at t?
. J .
b i > T
N6. Action Specification: Iy — My N2. Interpretation: V., S (lv1) — S,(lv2)
Specified psychological action descriptions on mechanisms M are: Interpret perceived inputs to comprehension:
M1: Pinch waypoint V1 — S: Arobotis selected
M2: Hold+drag waypoint to target V2 — S: Waypointisset
M3: Release waypoint at target V4 — S: Abutton isfound
M4: Search menu for command button V4 — S:Abuttonis clicked
M5: Click command button S (lvi:robotstatus) — S:Arobot is moving
1 i
'd ~ 'd

N7. Action Execution: M; — My
Sensorimotor efferent outputs on mechanisms M:
M1: Pinchwaypoint
M2: Hold+drag waypointto target
M3: Release waypoint at target
M4: Search menu for command button

(Grid) Search long list | (Affordance) Move closer
MS5: Click command button

N1.Perception:Vy — VsorSe — S5
Sensorimotor afferent inputs of interface variable Vy = f(My) or system
state Sp=h(V):
M1 — V1 Selected robot text
M2,M3 - V2 Waypoint location
L V4 Affordance pop-up menu
M4  —V4 Command button (legible)
M5 — V3 Command button (click status), Robot statustext
QH V3 —S Robotstatus

Physical«—Psychological

L /

System & Interface

Figure 3: Norman’s seven stages of action diagram as applied to fulfilling an
operational goal. The example illustrates the formation of the interaction goal
“Navigate robot to target” based on the system state “Robot is not at the target’
where the target may be an extinguisher, fire, first aid kit, or survivor—corresponding
to G1.1, G1.2, G1.3, and G1.4, respectively.
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The number of interaction goals (and thus Norman’s cycles) required to
fulfil an operational goal depends on the system state and the level of system
autonomy. For instance, if the robot system supports composite commands
that chain navigation and manipulation into a single interaction, the second
and third interaction goals could merge into one.

Each interaction goal G, expressed psychologically as G, translates into
an intention I (stage NS). This intention guides the specification of control
mechanisms M; (N6), physical actions M, (N7), resulting interface-level
changes V¢, and updates in the system state S;. These changes are perceived as
Vs and S; (N1) and interpreted into a higher-level understanding of the system
state Sg (N2). Figure 3 illustrates this analysis for a representative interaction
goal across both interface types.

The Norman-based analysis identified five control mechanisms M and four
interface feedback variables V, with each V linked to corresponding M. M1
is the pinch gesture used for robot selection (V1); M2 and M3 are drag-and-
release gestures for waypoint designation (V2); M4 refers to menu search
actions that lead to command button visibility (V4); and M35 is button
clicking actions that produce confirmatory feedback (V3). The grid and
affordance interfaces differ notably in how the desired command button
is found (V4). In the grid interface, V4 results entirely from explicit visual
search across an extensive menu panel via M4. In the affordance interface,
V4 results from both M2 and M4: waypoint interactions with actionable
objects (M2) automatically bring up a concise and object-specific menu for
visual search (M4). The dual-purpose functionality of M2—both waypoint
designation (V2) and pop-up mechanism for command visibility (V4)—
streamlines interaction by using one action to trigger two interface feedback
responses.

Table 2: Cognitive demand table.

Difficulty: Mental &  Why Difficult Common Errors Cues and Strategies
Physical Used

Mission Goal GO 1. High memory 1. Forget goals, 1. Glance at mission
1. Remember goals, demand violating constraints brief panel
constraints, contexts 2. Spatial search for 2. Miss important 2. Moving in MR
2. Situation Awareness  all important objects  objects space  to  change
3. Goal decomposition  (clutter, small icons, 3. Fail to capture viewpoint, manipulate

big map area)
3. Problem solving

important subgoals

the map
3. Training

Operational Goals
Gx.x
1. Multitasking

between subgoals for
multiple robots

1. Simultaneously
tracking multiple
robots

2. Attention switching
and recalling next

1. Losing track of next
action.

2. Idle
overlooked
3. Forgetting to switch

robots

1. Visualizing pending
tasks

2. Keeping track of
robot status

2. Multi-robot  action select robot

allocation and

prioritization

(Affordance) Affordance command  Forget how to find the = Memorizing and
Action  Specification  interface is not visible = menu training

N6 of M2 — V4 for
menu pop-up

by default. Need to
remember the menu
pop-up mechanism

Continued
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Table 2: Continued

Difficulty: Mental &  Why Difficult Common Errors Cues and Strategies
Physical Used

Action Execution  Small waypoint is  Fail to grab, Moving closer,
N7 of M1, M2, hard to aim, grab, manipulate and  training hand gesture
M3 for waypoint manipulate, release release as intended for better recognition
manipulation with hand gesture

(Grid) A list of buttons Waste time looking for ~ Memorizing and
Action Execution N7  requires time to search  desired button training

of M4 for menu search

through

(Affordance)

o Action Execution N7

1. Pop-up menu is
small and sometimes

1. Fail to find the
desired button

1. Moving closer to
change viewpoint

of M4 for menusearch  occluded by other 2. Fail to click on the 2. Execute M2 — V4
o Action Execution N7  objects desired button again to pop the menu
of M5 for button click 2. Pop-up menu

disappears
Perception N1 Lack visualization =~ Mistaken attempt ~ Memorizing
of extinguisher  of extinguisher to use a depleted

functional status remaining usage extinguisher

This structured analysis systematically identified all control mechanisms
and feedback variables required to realize interaction goals via the interfaces.
To complement structural insights derived from the GDTA (Figure 2) and
Norman-based analyses (Figure 3), we compiled an ACTA-style Cognitive
Demand Table (Table 2). This table captures where cognitive and physical
challenges emerged across the mission workflow, detailing the sources of
difficulty, common errors, and coping strategies. It provides a granular
view of workload distribution, highlighting how an interface influenced
user performance and effort, and where current design features failed to
adequately support user’s needs.

DISCUSSIONS

This study contributes a fine-grained analysis of cognitive workload in mixed
reality interfaces for multi-robot supervision and teleoperation, revealing that
even seemingly intuitive interfaces impose significant hidden burdens.

At the mission level (GO), the primary challenge was working memory
strain. Operators were required to retain mission goals, constraints, and
robot capabilities while simultaneously extracting relevant information
for decision making. This was further compounded by spatial search
demands within a 3D interface, where small or overlapping holographic
elements frequently required the user to adjust viewpoint. As the mission
decomposed into GDTA-derived operational goals, workload shifted toward
the coordination of multiple robots and their respective task assignments.
Operators had to continuously monitor the progress of each robot while
recalling the next intended actions—a cognitively demanding process of
switching attention between multiple concurrent Norman cycles, each
corresponding to a different goal and robot state.

Interestingly, despite its seemingly more natural and efficient design, the
affordance-based interface introduced several unexpected sources of effort.
While it replaced the static, exhaustive grid with a concise, context-aware
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command list, Table 2 shows that this design led to new challenges. The
actions required to execute menu search (stage N7 on M4) shifted from
scanning a long panel to managing small-sized, occasionally occluded, and
transient pop-up menus. This also increased the difficulty of executing button
clicks (stage N7 on MS5). To cope, users often had to reposition the viewpoint
or re-trigger the pop-up menu to regain visibility, thus redistributed rather
than alleviated the effort as intended. Furthermore, the dual function of M2
—serving both waypoint manipulation and triggering the pop-up menu—
could create difficulties for novice users unfamiliar with the affordance pop-
up mechanism (stage N6, for specifying which M influences V4). Because the
command menu is not persistently visible, it could lead to failed command
execution. In contrast, the grid interface anchored its menu panel to a
consistent position within the user’s field of view. While less adaptive to
context and non-scalable to more complex system, its fixed placement offered
better predictability during command search and ease the button clicking
action.

During the gulf of evaluation stages (N1-N3), both interfaces provided
timely and sufficient cues for assessing interface and system responses
within the simulated MR scenario. However, they lacked feedback on
the extinguisher’s remaining usage. Furthermore, in real-world remote
teleoperation, interface feedback must reliably indicate that the action has
been executed, and that the physical environment is responding as intended.
This is especially important given that the rendered system state on the
interface may be subjected to delay caused by factors such as sensor update
frequency, network latency, and computing speed.

The findings from the three-layered analysis suggest three general design
guidelines for improving multi-robot interaction in XR-based HRI systems.
First, interfaces should better assist with situation awareness, high-level
planning, and multitasking across multiple robots. Second, they should
reduce the number of Norman’s interaction cycles by supporting compound
actions or queued commands, allowing operator to delegate more and focus
on situation awareness and decision making. Third, within-cycle workload
should be minimized by reducing effort for adjusting task and interface
variables V, simplifying action sequences M and choosing input mechanisms
that provide rapid and low-error control.

One concrete example is to refine the affordance interface by anchoring
its pop-up menu to a fixed position relative to the user’s view, similar to the
grid interface, while preserving its context-aware and concise command list.
This hybrid approach could retain advantages of affordance interface while
mitigating the undesirable additional coping mechanisms for the small and
occluded buttons.

CONCLUSION

This study conducted a cognitive workflow analysis of XR interfaces by
integrating established methodologies: GDTA, Norman’s Seven Stages of
Action, and ACTA. By combining these methods, the study exposed hidden
cognitive workload that often escapes detection through traditional usability
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metrics. This structured approach enables interface designers and researchers
to interpret and justify design decisions with cognitively grounded evidence,
offering a deeper understanding of how interaction patterns affect mental
effort and performance. In addition, the results of this study contribute to
the design of XR-HRI systems that better support intuitive interaction and
can scale effectively with increasing system complexity and task demands.

However, the study has limitations. The analysis was conducted with a
small number of subject matter experts and focused on a single emergency-
response scenario, which may limit generalizability. Additionally, the
evaluation was performed in a simulated environment using HoloLens 2;
thus, real-world operational constraints were not fully captured. Future
work will extend this methodology to broader user populations and diverse
operational contexts, including real-time field evaluations. Further research
is also needed to refine and automate parts of the analytic process, enabling
faster iteration in early-stage XR interface development. Expanding the
framework to accommodate collaborative HRI and adaptive autonomy could
further enhance its applicability to next-generation XR systems.
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