
Human-Computer Interaction & Emerging Technologies, Vol. 195, 2025, 54–60

https://doi.org/10.54941/ahfe1006223

Accelerating Legacy Code Migration
With Artificial Intelligence
Amir Schur, Max Graves, Stephanie Heckel, and David Vandine

Dark Wolf Solutions, LLC 13454 Sunrise Valley Dr, Suite 550, Herndon, VA 20171,
United States

ABSTRACT

Organizations relying on critical systems with decades-old code face significant
challenges, making modernization an operational imperative due to issues like
operational stability, security, and a lack of updated features. This process of
transforming legacy code is challenging, but is now being accelerated and augmented
by Artificial Intelligence (AI) and large language models (LLMs). This research
investigates the use of various LLMs for legacy code translation, aiming not for a
perfect solution, but to significantly assist senior software developers by accelerating
the development process, enabling rapid prototyping and initial implementation. This
approach allows senior engineers to refine and productize the solutions, ensuring
quality and alignment with system requirements. The initial testing strategy involved
evaluating small subsets of legacy code within the Motif Framework, with the ultimate
goal to demonstrate AI’s role as an assistive tool for senior developers in accelerating
code modernization efforts.

Keywords: Artificial intelligence, Large language models, Human systems integration, Legacy
code migration

INTRODUCTION

Legacy software modernization has become increasingly common due to
the critical role that long-standing systems play in organizations and the
mounting challenges of maintaining them in their original form. Many of
these systems support core business operations, such as finance, logistics,
or healthcare, and cannot simply be replaced without substantial risk
and cost. Over time, however, these systems become incompatible with
modern technologies, making integration, security, and scalability difficult.
As Assunção et al. (2024) note, modernization efforts are often driven by the
need to reduce technical debt, enable digital transformation, and improve
software maintainability—all while preserving business logic that has been
refined over decades.

Furthermore, modernization is not solely a technical necessity but also a
strategic one. Organizations face pressure to remain agile and competitive,
which often requires re-platforming legacy applications, exposing their
business logic via APIs, and often migrating them to the cloud. The
increasing pace of change in software ecosystems—such as operating systems,
programming languages, and compliance requirements—means that legacy

© 2025. Published by AHFE Open Access. All rights reserved. 54

https://doi.org/10.54941/ahfe1006223


Accelerating Legacy Code Migration With Artificial Intelligence 55

systems left untouched become liabilities. According to Bass (2022), the
accumulation of “architectural and technical debt”in legacy codebases makes
ongoing development costly and brittle, necessitating interventions that align
with Lehman’s Laws of Continuing Change and Increasing Complexity
(Lehman, 1976).

While some of Lehman’s Laws of Software Evolution have been debated
and even challenged in the context of modern software development, a
significant body of scientific literature continues to affirm their relevance.
Lehman provided deep insights into how large, complex software systems
change over time. These laws are particularly relevant to legacy system
development, where software often persists for years or decades beyond its
original design lifespan.

One of Lehman’s key principles is the Law of Continuing Change, which
asserts that a software system must be continually adapted, or it becomes
less useful over time. In the context of legacy systems, this means that
maintenance and upgrades are not optional but essential. A legacy system
that remains untouched quickly drifts out of alignment with organizational
needs, new hardware platforms, and integration requirements. This leads to
mounting technical debt and operational inefficiencies.

Another relevant law is the Law of Increasing Complexity, which states
that as a system evolves, its complexity tends to increase unless work is
done to reduce it. Legacy systems often accumulate patches, undocumented
fixes, and workarounds that complicate the codebase. Without systematic
refactoring and architectural simplification, these systems become harder
to understand, test, and modify. This complexity impedes innovation,
discourages new developers, and increases the risk of failure during upgrades.

When an organization does not continuously adapt their system, even
though they are functioning perfectly, there comes a time that their
system becomes legacy. Then when a problem arises, suddenly there is
an immediate need to upgrade the legacy system. This often becomes a
significant challenge in software development projects. As there is a surge
of artificial intelligence development, we want to explore how much of these
capabilities can be utilized to assist a legacy modernization effort. This paper
explores our internal research in exploring the use of AI in legacy code
modernization.

ARTIFICIAL INTELLIGENCE FOR LEGACY CODE TRANSFORMATION

The emergence of transformer architectures has significantly advanced
artificial intelligence capabilities in natural language processing, code
comprehension, and code generation. Introduced by Vaswani et al. (2017),
the transformer model revolutionized deep learning by enabling parallel
processing and attention-based contextual understanding. This advancement
allowed significantly faster processing times, which opened the door for
various technological advancements. This is crucial for handling complex
sequential data like human language and programming code. Various
modern large language models (LLMs) built on transformer foundations now



56 Schur et al.

demonstrate strong proficiency in code summarization, translation between
programming languages, and even automated code refactoring.

In the context of legacy code modernization, transformers are increasingly
being applied to analyze outdated systems, extract business logic, and assist
in re-engineering efforts. These models can also provide semantic code search,
anomaly detection, and automated documentation generation—tasks that
traditionally required significant manual labor and institutional memory.
This is particularly valuable in environments where original developers are
no longer available, and documentation is sparse.

With the recent surge of LLMdevelopment, AI-powered code assistants are
being integrated into integrated development environments to assist software
developers in their daily programming tasks. A comprehensive analysis of the
Visual Studio Code ecosystem, one of the most popular IDEs, by Liu et al.
(2024) found 179 extensions explicitly categorized as AI coding assistants,
defined by terms like “ai code,” “gpt,” or “chatbot” in their metadata. How
much can a developer rely on AI assistance? This is what we want to start
exploring and have some level of expectation on this capability boost.

Even with their impressive capabilities, LLMs are essentially sophisticated
prediction machines. This inherent predictive nature means they can
sometimes generate outputs that are factually incorrect or nonsensical, a
phenomenon often referred to as ‘hallucination’ (Ji et al., 2023).

MOTIF LANGUAGE

We started exploring a simple code transformation using Motif as a
legacy source language. In the late 1980s and early 1990s, Motif emerged
as a dominant UNIX toolkit, winning out over alternatives like OPEN
LOOK/Open Windows. Its alignment with IBM’s Common User Access
guidelines and visual similarity to Windows and OS/2 helped drive broad
adoption users (Marshall, 1999).

Our strategy is to start with a simple Motif software program, then move
onto a larger more complex application. We initially targeted a simple open
source tic-tac-toe program from https://github.com/spartrekus/Motif-C-Ex
amples.

TARGET PLATFORM

Since the target Motif programs were desktop applications, a modern
technology stack comprising Electron.js and Typescript React.js was chosen
as a target stack. This combination offers several advantages in replacing
Motif for modern desktop applications.

Electron enables the creation of cross-platform desktop applications
using standard web technologies (HTML, CSS, JavaScript), wrapped in a
Chromium shell and Node.js runtime. This effectively eliminates the need for
platform-specific GUI libraries like Motif or Qt, ensuring consistent behavior
across different operating systems.

React.js, developed by Meta, offers a declarative, component-based
model for building user interfaces. This makes it easier to manage

https://github.com/spartrekus/Motif-C-Examples
https://github.com/spartrekus/Motif-C-Examples


Accelerating Legacy Code Migration With Artificial Intelligence 57

complex GUI states and user interactions compared to Motif’s imperative
and callback-heavy design. TypeScript adds static typing to JavaScript,
enhancing reliability and maintainability for larger codebases. This is
particularly valuable in modernizing legacy systems, as it reduces runtime
errors and facilitates refactoring. Compared to C code typically used in
Motif applications, TypeScript offers improved productivity, tooling, and
integration with modern development environments like Visual Studio Code.

Each component of this new stack is actively maintained, widely used
across the software industry, and largely known by the current development
workforce. These factors make this modern stack an excellent choice for
extending the life of a legacy Motif system.

TESTING STRATEGY

A testing strategy is critical in legacy code modernization. The intent of any
code base or software product within an enterprise is to support valuable
workstreams. Each legacy application is assumed to have some, often large,
number of features which support these various workstreams. Whether one
completely rewrites a software application from scratch based on SME/User
input (ignoring the legacy code base) or ports the legacy code base directly,
having a thorough understanding of these feature sets is of utmost importance
to maintaining the legacy feature set. It is equally important to have a
repeatable way to test these features. This can be facilitated through the
establishment of robust test procedures, often including automated test suites
to perform unit/integration testing as well as manual user acceptance testing
(UAT) protocols or procedures. This knowledge of, and ability to test,
the core functionality of the software helps establish a baseline. Once this
baseline is established, it can be used to guide the development of new
software, Transformation activities can start and then at the end another
comparable testing can be performed to measure level of success.

AI TOOLS UTILIZATION

Our intent is to explore the efficacy of pair programming with various LLMs,
putting the LLM in the role of a junior developer and having a human senior
developer task the LLM and then perform code reviews for the code product
that it produces. This more closely aligns with engineering work that is
performed by most agile development teams, and is in contrast to a senior
developer using an LLM to augment their own development flows directly.

Additionally, since most of the modern software engineering workforce is
not readily familiar with legacy software languages or frameworks, our intent
is to explore the effectiveness of LLMs in accelerating the understanding of
the comprehensive feature set of legacy software.

We evaluated multiple large language model (LLM) based AI tools—
including ChatGPT GPT-4o (OpenAI), Claude Sonnet 4 (Anthropic) and
Gemini 2.5 Pro (Google, using a custom-built internal user interface).
We also evaluate a beta project from Google that can be integrated with
GitHub repositories: Jules (https://jules.google.com). Jules is Google’s new



58 Schur et al.

autonomous, asynchronous AI coding agent, powered by Gemini 2.5 Pro
model. Similar prompts are given to each AI tool and then the results are
run separately. It is noteworthy that other utilities exist that can be used
similarly to how Jules is used - Claude Code Pro and Github Copilot being
two examples. These have not yet been evaluated, but we plan to evaluate
them in future iterations of this initiative.

To provide context for our evaluation of these AI tools, we created a
dedicated NotebookLM (notebooklm.google.com) to document a concise
history of each activity. As a note, Notebookllm has an option to create an
audio overview (can be very useful for Podcasts).

PRELIMINARY RESULTS

Our initial experiments involved providing each LLM-based tool with similar
prompts to translate small segments of Motif code into React/TypeScript
equivalents. The simple case (Tic-Tac-Toe) consisted of a short series of
prompts, which were kept nearly identical for each LLM in an attempt to
avoid bias in the results.

First, the LLMs were prompted to read the legacy Tic Tac Toe code base
fromGithub, summarize its core feature set, then provide us with instructions
for compilation. Next, the LLMs were prompted to suggest suitable modern
technology stacks with which to replace the legacy project. Finally, the LLMs
were prompted to port the legacyMotif code base to our preferred technology
stack. Our preliminary observations indicate varying degrees of success and
distinct strengths and weaknesses across the tools.

All LLMs were able to accurately describe the core functionality of the
legacy code, as well as instruct us how to compile and run the project. When
prompted, they were also able to fix a minor rendering issue in the original
project’s UI, including an explanation of why their suggested fix would
address the issue. They were also able to suggest a list of suitable modern
replacement technology stacks. On the other hand, all LLMs struggled to
suggest a properly structured start to the new project. Each LLM presented
solutions which were either outdated or not fully functional without telling
them exact instructions, and had to be provided exact instructions to start
the new project.

ChatGPT: Demonstrated a strong ability to understand the overall
structure of the Motif code and generate React components. However, it
sometimes struggled with accurately reproducing the specific UI behavior
and event handling logic of the original Motif application. We noted
several instances where ChatGPT invented components or properties that
didn’t exist in the target React/TypeScript framework, resulting in code
that would not compile or function correctly without significant manual
intervention.

Claude: Exhibited a more conservative approach to code generation, often
providing more verbose but generally more accurate translations. While
Claude produced less novel or creative solutions compared to ChatGPT,
it tended to avoid “hallucinations” and adhere more closely to established
React/TypeScript patterns. However, it sometimes lacked the ability to



Accelerating Legacy Code Migration With Artificial Intelligence 59

optimize the translated code for performance or readability, resulting in code
that was functional but less maintainable.

Gemini (Custom UI): Showed promise in understanding the intent of the
translation task and generating code that aligned with modern React best
practices. The custom UI allowed for iterative refinement of the prompts
and easier debugging of the generated code. However, the model sometimes
struggled with understanding the specific constraints and limitations of the
target environment, leading to code that was not fully compatible with our
chosen tooling and libraries.

Jules (Google): As an asynchronous AI coding agent, Jules could propose
changes independently. Initial findings indicated that it was able to translate
sections of code correctly, but would struggle and get stuck in endless loops
during testing. Further analysis is needed to fully validate results. It is
noteworthy that Jules is in Beta. It is also noteworthy that the use of Jules
presents a different development paradigm than how we were using the other
LLMs, since working with it more closely aligns with the asynchronous
nature of agile development versus going prompt-by-prompt with the others.

Overall, our preliminary findings suggest that while LLM-based tools can
significantly accelerate the initial stages of legacy code translation, they are
not yet capable of fully automating the process. This is true even for the case
of the very trivial Tic-Tac-Toe program. Though, for this simple case, it is
noteworthy that all results were obtained without the developer needing to
read or comprehend the legacy language.

Our results point toward manual review, testing, and refinement of
the generated code being essential to ensure accuracy, reliability, and
maintainability. The tools appear to be most effective when used in a
collaborative workflow, where experienced developers can leverage their
expertise to guide the LLM and correct its mistakes, or as an augmentation
of their own skillset to expedite reading documentation while writing code
themselves.

Further research and experimentation are needed to optimize the use of
these tools and unlock their full potential for legacy code modernization.
A more rigorous testing and evaluation matrix will be incorporated as the
next step, using a much more complex Motif code base.

FUTURE WORK

This initial investigation into the use of AI for legacy code modernization has
highlighted both the promise and the limitations of current LLM-based tools.
While the ability to rapidly generate code snippets and suggest architectural
transformations is compelling, challenges remain in ensuring the accuracy,
reliability, and maintainability of the resulting code.

The challenge of legacy code transformation is not going away. In fact,
as mission-critical systems age and the pool of developers familiar with
legacy languages continues to shrink, the risk and cost of inaction only
grow. Recognizing that LLMs are unlikely to fully automate legacy code
modernization in the near future, we will focus on developing tools and
workflows that facilitate effective human-AI collaboration. This includes



60 Schur et al.

designing user interfaces that allow developers to easily review, modify, and
validate AI-generated code, as well as developing methods for capturing and
incorporating developer feedback into the LLM’s training process.

REFERENCES
Assunção, W. K. G., Marchezan, L., Egyed, A., & Ramler, R. (2024). Contemporary

software modernization: Perspectives and challenges to deal with legacy systems.
arXiv. https://arxiv.org/abs/2407.04017

Bass, J. M. (2022). Technical debt, software evolution and legacy. In Agile software
engineering skills (pp. 291–296). Springer, Cham. https://doi.org/10.1007/978-3-
031-05469-3_20

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y.,... & Bang, Y. (2023). Survey
of hallucination in natural language generation. arXiv. https://arxiv.org/abs/
2202.03629

Lehman, M. M., & Belady, L. A. (1976). A model of large program development.
IBM Systems Journal, 15(3), 225–252.

Liu, Y., Tantithamthavorn, C., & Li, L. (2024). Protect Your Secrets: Understanding
and Measuring Data Exposure in VSCode Extensions. https://arxiv.org/abs/2412.
00707

Marshall, D. (1999). The Road to X/Motif [Lecture notes]. Cardiff University.
Retrieved June 16, 2025, from https://users.cs.cf.ac.uk/Dave.~Marshall/X_lectur
e/X_book_caller/node1.html.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving
language understanding by generative pre-training.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,... &
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30. https://doi.org/10.48550/arXiv.1706.03762

Zhou, Y., Guo, D., Liu, S., Ou, Y., Zhang, M., & Feng, X. (2022). CodeT5+:
Open code large language models for code understanding and generation. arXiv.
https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2407.04017
https://doi.org/10.1007/978-3-031-05469-3_20
https://doi.org/10.1007/978-3-031-05469-3_20
https://arxiv.org/abs/2412.00707
https://arxiv.org/abs/2412.00707
https://users.cs.cf.ac.uk/Dave.~Marshall/X_lecture/X_book_caller/node1.html
https://users.cs.cf.ac.uk/Dave.~Marshall/X_lecture/X_book_caller/node1.html
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/2305.07922

	Accelerating Legacy Code Migration With Artificial Intelligence
	INTRODUCTION
	ARTIFICIAL INTELLIGENCE FOR LEGACY CODE TRANSFORMATION
	MOTIF LANGUAGE 
	TARGET PLATFORM
	TESTING STRATEGY
	AI TOOLS UTILIZATION
	PRELIMINARY RESULTS
	FUTURE WORK


