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ABSTRACT

Computer vision, a pivotal field within computer science, empowers machines to
interpret and analyse visual information such as images and videos. Its growing
application in healthcare, particularly in the diagnosis and treatment of cardiac
conditions, underscores its transformative potential. Traditional methods for detecting
cardiac beat rates are largely manual, making them time-consuming and labour-
intensive, thereby limiting their scalability in clinical contexts. To address this
gap, there is a critical need for an automated system capable of identifying cells
in video data and extracting key parameters such as beat rate, cell area during
systole and diastole, and beat duration. This study introduces a novel computer
vision-based framework that automates the detection of heart cell contractions from
video recordings. By employing motion segmentation, masking techniques, and
machine learning algorithms, the system efficiently identifies active cardiomyocytes,
calculates beats per minute (BPM), and measures the time taken for a complete
contraction-relaxation cycle. This approach not only improves diagnostic accuracy but
also contributes to more efficient and scalable cardiac assessments, representing a
significant advancement in computational healthcare.
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1. INTRODUCTION

The human heart is a highly sophisticated organ that plays a fundamental
role in sustaining life by continuously circulating oxygenated blood and
essential nutrients throughout the body (Woodcock, 2005). Monitoring
cardiac activity, particularly the beat rate, is crucial for the diagnosis and
treatment of cardiovascular diseases. However, existing methods for beat
rate detection and cardiac parameter measurement largely depend on manual
observation and analysis, which are time-consuming, labour-intensive, and
prone to human error (Grune, 2019). These limitations hinder the scalability
and efficiency of cardiac assessments in both clinical and research settings.
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There is a growing need for automated systems capable of accurately
quantifying key parameters of cardiomyocytes (heart muscle cells) including
beat rate, beat duration, and cell area during both systolic and diastolic
phases. Systole refers to the contraction phase of the cardiac cycle, during
which blood is pumped from the heart, while diastole denotes the relaxation
phase when the heart chambers refill with blood (Woodcock, 2005). Reliable
measurement of these parameters is essential for understanding normal
cardiac function and pathological changes, such as those induced by aging
or disease (Bor’bely, 2005).

This study presents an automated system that integrates advanced image
processing andmachine learning techniques to detect cardiomyocyte beat rate
and calculate associated metrics from video microscopy footage. The system
enhances video quality through preprocessing, applies motion segmentation,
motion detection, masking, and K-Means clustering to identify and track
cardiomyocytes, and calculates beat intervals and cell areas during systole
and diastole.

The structure of this paper is as follows: Section 2 reviews related
work in beat rate detection and cardiomyocyte analysis; Section 3 outlines
the proposed methodology and Section 4 concludes with potential future
enhancements.

2. RELATED WORK

Automatic Cell Detection and Tracking: In his seminal work, Crane
(1979) proposed an innovative method for automatic cell detection and
tracking, aiming to advance the study of cellular behaviour. Observing
that contemporary cell tracking techniques were limited in efficiency and
flexibility, Crane introduced a novel “cell-tracking template” that integrates
Fourier transforms, image correlation, and cellular automata to enhance
detection accuracy. This approach was designed to provide a robust and
adaptable platform for tracking cellular movement, particularly in complex
imaging environments (Crane, 1979).

The template offers several advantages, including the ability to track
cells in three dimensions and to yield accurate results under appropriate
conditions. However, Crane (1979) also acknowledged certain limitations,
such as the system’s inability to perform real-time tracking and its
susceptibility to image noise and motion blur. Despite these challenges, the
proposed method has broad applicability in fields such as cell culture analysis
and microscopy, offering a valuable tool for investigating cell dynamics and
behaviour (Crane, 1979). Overall, Crane’s work presents a foundational
contribution to the development of automated cell tracking technologies.

The MYOCYTER: MYOCYTER (Grune, 2019) is an open-source
macro developed for the ImageJ platform, specifically designed to quantify
cardiomyocyte and cardiac contractions from video recordings. It offers
a robust and user-friendly interface for large-scale data analysis, enabling
the extraction of diverse contractile parameters. The tool has demonstrated
reliability in both in vitro and in vivo applications, supporting analysis across
cellular and animal models.
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Key functionalities of MYOCYTER include dynamic thresholding,
automated multi-cell detection, masked evaluations, and post-analysis
parameter adjustments. Its performance has been validated using synthetic
video data that adhere to predefined mathematical functions, confirming
its accuracy in extracting relevant contraction metrics. The software has
also been employed in experimental studies involving NZO/HIBomDife and
C57BL/6J mouse strains, as well as Daphnia pulex (water fleas). Statistical
evaluations of the extracted parameters were performed using GraphPad
Prism (Grune, 2019).

However, whileMYOCYTER is capable of determining beat counts within
video sequences, it lacks the functionality to measure the spatial area of
cardiomyocytes.

DATASET

For this research, we utilized our own proprietary data comprising over
96 gigabytes of video clips. This dataset consists of video recordings of
cardiomyocytes (synthesized in lab by co-author Prashant Ruchaya) observed
through a microscope and captured using a smartphone. The video clips
have a frame rate of 100 frames per second (FPS), with each clip being
approximately 10 seconds in duration.

3. METHODOLOGY

Figure 1 illustrates the three main parts of the suggested system. In the
sections that follow, each element will be covered in detail.

Figure 1: System design.

Video Pre-Processing and Motion Detection

The proposed algorithm efficiently detects cardiomyocyte motion from video
data by identifying dynamic regions within successive frames. Initially, the
video frames are converted to greyscale to reduce computational complexity,
followed by Gaussian blurring to suppress noise and enhance image quality.
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Motion is detected by calculating the absolute difference in pixel intensities
between consecutive frames, producing a difference map that highlights areas
of activity. This map is then binarized using thresholding, where significant
changes are marked as white pixels (value 1) and non-significant areas as
black (value 0).

To focus analysis on meaningful activity, the algorithm extracts the
coordinates of non-zero pixels in the binary image, corresponding to regions
where motion occurs. By isolating these active areas, the method ensures
computational efficiency and avoids unnecessary processing of static regions.
This targeted approach forms the basis for subsequent cardiomyocyte
analysis, offering a precise and scalable solution for detecting cellular motion.
A visual representation of the workflow is provided to support understanding
of the process.

Figure 2: Pre-processing flow chart.

Calculate Beat Rate of the Cell

The proposed algorithm utilizes frame-by-frame video analysis to detect
and quantify cardiomyocyte beat rates, prioritizing both computational
efficiency and robustness. Motion is identified by isolating non-zero pixels
(those with intensity values greater than zero) after preprocessing steps
such as background subtraction and thresholding. These pixels represent
active regions within each frame, enabling the algorithm to capture spatial
motion without resorting to complex tracking or feature extraction methods.
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This simplification allows for efficient detection of cardiac activity while
preserving accuracy across varying datasets.

The algorithm introduces two state variables, current_state and prev_state,
to monitor transitions between motion and no-motion frames. For each
frame, the number of non-zero pixels is evaluated: if greater than zero, the
frame is marked as active; otherwise, it is considered inactive. A beat is
registered whenever a transition from inactivity to activity occurs, formally,
when prev_state = False and current_state = True. Each detected transition
increments the beat counter, and the beat rate is then calculated using the
formula R=B/TR = B/T, where B is the total number of beats and T is the
video duration in seconds. This motion-based approach ensures scalability
and eliminates the need for explicit object recognition, making it well-suited
for diverse cardiomyocyte imaging datasets. A visual workflow diagram is
included to clarify the algorithm’s operation.

Figure 3: Calculate beat rate flowchart.

Measuring Area of the Cell

Building on the principles of frame-by-frame analysis, this algorithm is
designed to estimate the spatial area of cardiomyocytes by applying clustering
techniques to regions of motion within video frames. Initially, non-zero pixels
(representing active regions) are extracted following standard preprocessing
procedures such as background subtraction and thresholding. These pixels
form the basis for identifying individual cells, as they highlight areas
associated with cellular motion. To segment these regions, the algorithm
employs the KMeans clustering method, which partitions the non-zero pixel
array into distinct groups, each corresponding to a unique cardiomyocyte.
This approach is well-suited for spatial data and offers an efficient means of
delineating cell boundaries.

Following clustering, the area of each identified cell is computed by
counting the number of pixels within each cluster. These values serve as
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quantitative estimates of cell size and are exported to a CSV file for further
analysis and integration into broader research workflows. For enhanced
interpretability, the algorithm generates a visual overlay on each video
frame, assigning unique colors to each cluster and annotating them with the
corresponding area. Overall, the method provides a scalable and adaptable
solution for cardiomyocyte area estimation, capable of maintaining accuracy
across diverse imaging datasets. A visual summary of the algorithm is
included to support understanding and replication.

Figure 4: Calculating cell area flowchart.

By employing K-means, we effectively quantify the areas of cells based on
their motion, providing a structured dataset for subsequent analysis.

4. CONCLUSION & FUTURE WORK

This study presents the development of an automated system for analysing
the beating dynamics of human heart cells, employing advanced computer
vision and machine learning techniques to overcome the inherent limitations
of manual measurement methods (Grune, 2019). The system is designed
to streamline cardiomyocyte analysis, thereby providing an automated,
efficient, and scalable solution for both biomedical research and clinical
diagnostics.

Future enhancements to the framework are anticipated, including rigorous
performance validation using specialised metrics (Pantofaru, 2005) through
comparisons with similar existing tools (Grune, 2019), which are expected
to bolster the system’s reliability. By addressing the current limitations, this
proposed framework promises more comprehensive and precise analyses of
cardiomyocyte activity, potentially advancing the fields of cardiac diagnostics
and therapeutic research.
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