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ABSTRACT

The assessment of the upper limb functional workspace in an ecological environment
is important for the evaluation of clinical progress in persons suffering from
musculoskeletal disorders or neurological impairments. Inertial Measurement Units
(IMUs) represent a very effective technology for the assessment of human movement
in ecological settings. This work presents a preliminary validation of a methodology
for reconstructing and assessing the upper limb functional workspace explored during
the daily routine in ecological setting through IMUs. Participants in the study were
involved in 7 hours data acquisition with IMUs performing two different protocols
simulating an active and a non-active arm, respectively. For each of the two protocols,
a workspace for each limb segment and each participant was reconstructed by
evaluating the estimated spatial position of the sensors over time. A density and
clusterization assessment was performed on each workspace through the application
of a Gaussian kernel and k-means algorithm. Next, workspaces from the non-
active and the active protocols were compared by performing statistical tests on
the distributions of points in the respective workspaces along the three spatial
coordinates. Results showed significant difference between the two protocols (active
and non-active) on every spatial coordinate and every of the three segments in
the upper limb (arm, forearm, hand) and different clusterization of the workspaces.
The findings represent a preliminary confirmation of the applicability of IMUs to
the assessment of changes in the functional workspace of the upper limb. Further
developments may involve enlarging the sample size, testing on impaired persons,
and assessing in more realistic scenarios.
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INTRODUCTION

Musculoskeletal disorders (MSDs) and neurological impairments can
significantly affect the mobility of the upper limb (Almomani et al., 2019;
Urwin et al., 1998). This results in compensative motor strategies that reduce
the dimension of the explored space during the execution of the activities of
daily living (ADL) (Almomani et al., 2019; Magermans et al., 2005).
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Therefore, when assessing the clinical progress of patients recovering from
a motor disorder involving the upper limb, it is important to evaluate the
changes in their functional workspace (Kurillo et al., 2013; Matthew et al.,
2020).

This assessment should preferably be performed in an ecological setting,
to foster the investigation of the upper limb mobility during the everyday life
of the patient (Davis and Burton, 1991).

Among the available technologies for movement analysis, the most suitable
for kinematic monitoring in ecological settings are Inertial Measurement
Units (IMUs) (Grip et al., 2022; Hindle et al., 2021; Poitras et al., 2019).
These sensors can indeed be easily worn and attached to a person, measuring
joint angles and accelerations without the need for any additional devices or
supervision (Grip et al., 2022).

In this work, we present a pilot attempt to reconstruct and assess the
functional workspace from IMU data related to the orientation of all
segments in the upper limb kinematic chain.

RELATED WORKS

Because of the clinical importance of this metric (Matthew et al., 2020),
literature about the use of technologies for movement analysis to reconstruct
the functional reachable workspace of the upper limb has grown over time.
The majority of studies focused on evaluating this metric relying on datasets
acquired using Microsoft Kinect (Kurillo et al., 2013; Lee et al., 2020;
Matthew et al., 2020).

Notably, the work by Carmona-Ortiz et al. (Carmona-Ortiz et al., 2020)
presented an attempt at using IMUs to reconstruct the upper limb functional
workspace: they performed a pilot study comparing the functional workspace
of one healthy and one impaired participant, focusing on the space explored
by the wrist joint.

In this work, we present a preliminary evaluation of a methodology for
the reconstruction through IMUs of the functional workspace of all the three
segments of the upper limb (arm, forearm, hand) and the detection of changes
in the workspace between an active and a non-active upper limb.

METHODS

Measurement System

Orientation data were acquired using four BNO080 IMUs, connected to a
central unit that synchronizes signals and saves data on a SD card. Previous
works in the literature demonstrated the accuracy of this type of sensors and
their reliability for the study of the upper limb (Stanzani et al., 2020). The
output of the sensors are unitary quaternions representing their orientation
in the Earth’s reference frame.

Experimental Protocol

The four IMUs were placed on the sternum, arm, forearm and hand
respectively. Participants wore these sensors by attaching them to the limbs
using elastic bands.
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Each participant performed two different data acquisition sessions on two
different days: on the first day the reduced mobility protocol (RMP) was
performed, while on the second day the high mobility protocol (HMP) was
performed. Participants were all right-handed and the dominant right arm
was monitored through IMUs during both the RMP and HMP sessions.

RMP involved a 7 hours acquisition session, during which participants
were asked to perform only the tasks of a routine office working day which
mainly involved sitting at their desk, trying to limit wide-range movements
(e.g. to stretch oneselves).

HMP involved a 7 hours acquisition session, during which the regular
office activity at the desk was alternated with a set of tasks simulating
activities performed at home during a daily routine and involving a high
amount of mobility of the upper limb. Detailed instructions for these tasks
and frequency of execution are reported in Table 1.

Table 1: Tasks performed during the high mobility protocol. Repetitions were
performed throughout the 7h acquisition.

Activity Instructions Repetitions

Move objects Open a wardrobe, pick up
objects from a high shelf,
move them onto a low
shelf, close the wardrobe

2 times the whole sequence, each
time moving 10 objects

Throw garbage
in the
dumpster

Take the rubbish bag, carry it
to the bin, open the bin,
throw the bag, close the bin

2 times the entire sequence

Sweep the floor Take the broom, sweep the
floor, take the dustpan,
collect residual dust, throw
in the bin, put broom and
dustpan back in place

2 times the entire sequence; the
act of sweeping was performed
for 1 minute

Clean surfaces Open a wardrobe, take
cleaning products, put
cleaning product onto a rag,
move the rag around the
surface, put cleaning
products back in place

2 times the entire sequence with
the rag moving action lasting
30 seconds; the first time a
horizontal surface (e.g. table)
was cleaned, while the second
a vertical surface (e.g.
window) was cleaned

Pour water into
a glass and
drink

Take a glass placed on a high
shelf, put it on the table,
open the cap of a bottle,
pour water, close the bottle
cap, drink the water, wash
the glass, put the glass back
in place

10 times the sequence opening
the bottle cap, drinking and
reclosing it followed by the
washing action involving
rubbing the entire glass surface
10 times to wash, and 10
additional times to dry

Continued
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Table 1: Continued

Activity Instructions Repetitions

Get dressed and
undressed

Take off the jacket, take off
the sweatshirt or jumper,
take off the shirt, put the
shirt back on, put the
sweatshirt or jumper back
on, put the jacket back on

10 times the entire sequence

Write on the
blackboard

Write a sentence and draw a
figure on the blackboard

10 times writing and 10 times
drawing

Unscrew a light
bulb

Raise the arm so that the hand
is pointing towards the
ceiling, rotate the limb to
unscrew

10 rotations

Draw the
curtains

Open and reclose the curtains 10 times

Stretch oneself Freely performed 10 stretching sequences lasting
20 seconds each

Workspace Reconstruction

Hereafter the processing of the quaternions output by the IMUs to obtain the
functional workspace is described.

Processing was performed in Python 3.11, with Numpy 1.26 and Scipy
1.11 for calculations and Matplotlib 3.8 for data plotting.

Quaternions are below defined as q = w + ix + jy + kz with
i, j,k denoting the imaginary units.

We first defined a unitary axis as a unit quaternion with a single imaginary
part: v = i.

At each time frame, for each of the four IMUs, the unitary axis v was then
rotated according to the quaternion output q from the IMU, based on the
following equation:

l = qvq∗ (1)

where ∗ indicates the conjugate of the quaternion.
The unitary rotated axes l for each of the four IMUs were then

multiplied by the anthropometric average length of the segment relative
to each IMU, obtained from anthropometric tables [13]. Therefore, at
the end of this process, four quaternions representing the orientated
axes of each limb were obtained. Cartesian coordinates of those axes
were directly obtained from the imaginary parts of the said quaternions.
Consequently, after this process three axes for each limb segment were
available:
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• a =
[
ax, ay, az

]
for the arm

• f =
[
fx, fy, fz

]
for the forearm

• h =
[
hx,hy,hz

]
for the hand

The positions pa,pf ,ph of the extremities of each of the three limb
segments were therefore calculated based on the following kinematic
chain:

• pa =
[
ax, ay, az

]
• pf =

[
ax, ay, az

]
+

[
fx, fy, fz

]
• ph =

[
ax, ay, az

]
+

[
fx, fy, fz

]
+

[
hx,hy,hz

]
These positions represent one point at the considered time frame

in the functional workspace for each of the three limbs. Repeating
the process for each time frame in the dataset allowed to build the
complete functional workspace for each limb segment explored during the
acquisition.

Signals relative to the x, y, z of each limb were then downsampled
to 10000 samples using linear interpolation for the purpose of data
visualization.

Based on the overall downsampled functional workspace, a density value
for each point was then calculated through a kernel-density estimation using
a Gaussian kernel (µ = 0, σ = 0.1).

Workspace Clustering

On each of the reconstructed workspaces, a gradual thresholding
based on the density values obtained through the Gaussian kernel was
performed.

Specifically, given a density threshold t, all points with a density lower than
t were removed from the workspace.

This process was repeated iteratively by variating t from 0 to 0.8 with steps
of 0.1.

On each of the thresholded workspaces, the k-means algorithm was run
and a curve for the inertia as a function of the number of selected clusters k
was obtained.

Statistical Analysis

The distributions of position data for each of the three limbs (arm, forearm,
hand) from all subjects for every x, y, z spatial coordinate and for both the
RMP and HMP protocol were computed.

Normality was evaluated for each distribution through a Shapiro-Wilk
test.

For normal distributions, a two-sided t-test was performed, whereas for
non-normal distributions a two-sided Mann Whitney U-test was applied, to
test the hypothesis of dissimilarity between the corresponding distributions
in RMP and HMP protocol.
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A Bonferroni correction was applied to the tests performed on each of the
three limbs (arm, forearm, hand) to account for multiple testing (three tests
on each x, y, z spatial coordinate).

For each of the inertia curves obtained through density thresholding
and k-means algorithm application as explained in the previous
section, the average and standard deviation across participants were
calculated.

RESULTS

Number of Participants

We included 5 male healthy participants (average age ± standard deviation:
38.8 ± 13.73 years).

Workspace Reconstruction

Figure 1 shows examples of workspaces for one representative participant
for the three limb segments in both the RMP and HMP protocol.

Figure 1: Functional workspaces for arm, forearm and hand in both the RMP and HMP
protocol for one representative participant.
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Workspace Spatial Distribution

Figure 2 shows the distribution of points reached by all participants during
both RMP and HMP protocols along the three spatial coordinates x, y, z for
every of the three limb segments (arm, forearm, hand).

All Shapiro-Wilk tests performed on the distributions exhibited p < 0.05:
therefore, the null hypothesis is rejected for every test and all distributions are
assumed to not be normal. Consequently, results from Mann-Whitney tests
comparing RMP and HMP distributions are presented.

All Mann-Whitney tests comparing RMP and HMP distributions showed
p < 0.05. The Bonferroni correction on these tests led to a corrected alpha
equal to 0.02 and showed all corrected p < 0.02. Therefore, the null
hypothesis is always rejected and statistical differences between the RMP
and HMP population are visible for every of the three limb segments (arm,
forearm, hand) and for all the three spatial coordinates x, y, z.

Figure 2: Distribution of points reached by all participants during both RMP and
HMP protocols along the three spatial coordinates x, y, z for every of the three limb
segments (arm, forearm, hand).

Workspace Clustering

Figure 3 shows the average curves of inertia as a function of the number
of clusters k for every of the three upper limb segments (arm, forearm,
hand) obtained after density thresholding and k-means clustering for three
representative values of the density threshold in both RMP and HMP.
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It is noticeable that, while increasing the density threshold, for every of the
three limb segments, the inertia of clusters detected in the HMP protocols
decreases more rapidly than for the RMP protocols.

Figure 3: Average curves with standard deviation showing inertia as a function of
the number of clusters k obtained after density thresholding of the three upper limb
segments workspaces for three representative density thresholds (0, 0.3, 0.7) for the
two RMP and HMP protocols.

DISCUSSION

Our findings support the potential applicability of the IMUs to the assessment
of the changes in the functional workspace of the upper limb explored by a
patient during his daily life.

The results we obtained strengthen findings from the previous pilot
presented in (Carmona-Ortiz et al., 2020) by relying on statistical comparison
thanks to a larger sample size and extending the analysis to all the segments
of the upper limb (arm, forearm, hand).

The cluster analysis through Gaussian kernel and k-means revealed lower
inertia in the HMP protocol while increasing the density threshold. This
suggests the presence of more tight high-density clusters with respect to
the RMP protocol, which can be interpreted as an effect of the additional
performing of ADL outside the arm stationary area for a more prolonged
time. This evidence supports the possibility of using this methodology for the
clinical assessment of the amount of mobility of the upper limb.
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Nonetheless, this work represents only a preliminary exploration and has
several limitations. First, the included sample size, even if larger than in the
attempts we found in the literature, was composed of only five participants
and no impaired persons were involved. Enlarging the sample size would
strengthen the validity of the results.

Moreover, we just simulated a subset of possible movements that are
performed by persons with an unimpaired healthy arm in an ecological
setting, but we did not test in a real scenario. Performing further acquisition
in a real-life setting (e.g. at home) would provide more realistic insights about
the applicability of the approach. In this latter case, indeed, ADL would
be performed for a higher amount of time: combined with the inclusion of
impaired participants (which should exhibit even remarkably lower mobility
than what we simulated in the RMP), this further development could lead to
detect greater differences in the workspaces.

Also, improved results could arise from enlarging the duration of the
observation (e.g. one-week monitoring) in order to evaluate long-term
variations in the use of the upper limb.

However, even if our findings should just be considered very preliminary
results, they provide promising indications in the direction of using IMUs as a
tool to monitor patient progresses in an ecological setting. The assessment of
the functional workspace indeed provides very important information about
the mobility of the upper limb, which can be extremely helpful for a thorough
clinical assessment (Kurillo et al., 2013).

The use of motion analysis technologies can help developing quantitative
indicators that provide an objective evaluation of the variations in the
functional workspace. However, the type of motion analysis technologies
employed can strongly impact the usability of the system. IMUs represent
a non-cumbersome and easy to wear type of sensors: therefore, validating
their applicability in the assessment of functional workspace represents
an important step that can enlarge their employment in objective clinical
assessment in an ecological setting.

CONCLUSION

In this study we presented a preliminary evaluation for the assessment of
the functional workspace explored by a person in an ecological environment
through IMUs, comparing the workspace from an active arm with the one
from a non-active arm.

The preliminary results that we obtained suggest a good applicability of the
methodology for the reconstruction of the workspace from IMU data and for
the assessment of such workspace. Further developments of this work include
testing on a larger sample size, on impaired persons, and in a more realistic
scenarios and for longer time.

Exploring these future directions could strengthen the validity of our
results and validating the applicability of IMUs in the assessment of the
functional workspace, fostering the application of this technology for an
objective and quantitative assessment of the upper limbmobility in ecological
environment.
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