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ABSTRACT

Human-activity recognition (HAR) underpins a wide range of m-health, smart-home,
and context-aware services, yet conventional approaches frequently struggle with
overfitting, class imbalance, and limited capacity to capture long-range temporal
dependencies. In this study we introduce a lightweight, end-to-end Transformer
pipeline that learns directly from raw smartphone inertial signals, eliminating the need
for manually engineered features. We evaluate the approach on MotionDetection,
a 12-channel dataset collected from 24 volunteers who performed a scripted series
of everyday movements while carrying a Samsung Galaxy Note 20 Ultra. After
windowing and minimal preprocessing, the Transformer attains 98% validation
accuracy with no discernible overfitting. Relative to a strong CNN-BiLSTM baseline,
it improves the macro F1-score by 3.6 percentage points while employing a smaller
parameter budget, underscoring its computational efficiency. These findings indicate
that Transformer architecture can provide a robust, scalable foundation for real-world
HAR on commodity mobile devices, paving the way for battery-friendly, on-device
activity monitoring in health and ambient-assisted applications
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INTRODUCTION

Human Activity Recognition (HAR) using wearable and smartphone-based
sensors has emerged as a critical component of modern healthcare, fitness
tracking, and ambient intelligence systems. Accurately detecting activities
such as walking, jogging, sitting, or climbing stairs enables a wide range
of real-world applications, from fall detection in eldercare to personalized
fitness coaching and context-aware mobile services (Lara and Labrador,
2013; Avci et al., 2010).

Traditional HAR approaches typically relied on hand-crafted statistical
features extracted from accelerometer and gyroscope signals, followed by
classical machine learning models such as support vector machines (SVMs)
or hidden Markov models (HMMs) (Kwapisz et al., 2011; Wang et al.,
2019). Although effective under constrained conditions, these methods often
struggle in real-world settings due to variability in sensor noise, subject
diversity, and subtle inter-class similarities, particularly among dynamic
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locomotion activities. With the advent of deep learning, convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), including
Long Short-TermMemory (LSTM) architectures, have significantly advanced
HAR by enabling end-to-end feature extraction directly from raw sensor
signals (Hammerla et al., 2016; Ordóñez and Roggen, 2016; Hochreiter
and Schmidhuber, 1997). However, these models still encounter notable
limitations: CNNs are effective for local pattern detection but inefficient at
modeling long-range dependencies, while RNNs, though capable of sequence
modeling, suffer from vanishing gradients and training inefficiencies over
extended time windows.

More recently, attention-based architectures—particularly transformers—
have demonstrated remarkable success across sequential domains such as
natural language processing and time-series forecasting (Vaswani et al.,
2017; Zhou et al., 2021). Transformers leverage self-attention mechanisms
to capture both short-term patterns and long-range dependencies without
relying on recurrence, offering efficient parallel computation and improved
scalability.

In this work, we explore the application of transformer encoders for
smartphone-based human activity recognition. We develop a compact
and lightweight transformer architecture specifically designed for raw
inertial measurement unit (IMU) signals, aiming to capture the complex
temporal dynamics of human motion without the need for manual feature
engineering. Using the MotionDetection dataset, collected under real-
world conditions, we instructed participants to perform activities naturally
while maintaining consistent device placement and activity labeling across
trials. The proposed model demonstrates superior recognition accuracy
over baseline CNN-BiLSTM architectures while remaining computationally
efficient for potential deployment on mobile platforms.

The main contributions of this work are as follows:

• We introduce a new dataset, called MotionDetection, collected from
24 participants under realistic and semi-controlled conditions using
only a standard smartphone placed in the front pocket. The protocol
captured six activities with attention to minimizing bias while preserving
naturalistic behavior.

• We propose lightweight transformer architecture specifically designed
for raw smartphone IMU data, enabling efficient end-to-end learning
without reliance on handcrafted features.

• We implement an effective windowing and class-balancing strategy
to mitigate dataset imbalance, particularly improving recognition
performance for challenging activities such as stair traversal.

RELATED WORKS

Human Activity Recognition (HAR) has long been a central area of research,
with early methods relying on handcrafted statistical features combined with
traditional machine learning classifiers such as support vector machines
(SVMs) and hidden Markov models (HMMs). While these approaches
proved effective under controlled settings, they struggled to generalize across
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varying users and environments due to limitations in feature design and
model adaptability.

With the growth of deep learning, more powerful end-to-end models
have emerged, capable of learning complex spatiotemporal patterns directly
from raw sensor data. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), particularly long short-term memory
(LSTM) architectures, were among the first to significantly advance HAR
performance. Raj and Kos (2023) demonstrated that a carefully optimized
CNN could achieve up to 97.2% accuracy on the WISDM dataset.
Mekruksavanich and Jitpattanakul (2023) extended this by incorporating
channel attention mechanisms into multi-channel CNNs, reaching accuracies
as high as 98.9% across various benchmark datasets. Recurrent models
have also been widely explored. Zhang et al. (2023) proposed an attention-
based residual BiLSTM network, integrating residual connections and layer
normalization to enhance sequence modeling. Their model achieved 97–99%
accuracy on datasets like UCI-HAR andWISDM, demonstrating the value of
enhancing RNN-based models with attention and architectural refinements
(Zhang et al., 2023).

More recently, attention-based architecture, particularly Transformers,
have gained momentum in HAR research. Xing et al. (2023) introduced
SVFormer, a Vision Transformer-based framework for semi-supervised
video HAR, showing strong performance on large-scale datasets such as
Kinetics-400. While most Transformer-based work has focused on video or
multimodal HAR, Pramanik et al. (2023) explored their utility in sensor-
based HAR, proposing a deep reverse attention model that dynamically
emphasizes relevant signal segments over time. Their approach achieved
state-of-the-art results on five wearable HAR datasets. Hybrid models that
combine CNNs with Transformers have also shown promise. Djenouri
and Belbachir (2023) introduced the Convolutional Visual Transformer
Network (CVTN), in which CNNs first extract spatial features, and
Transformers model temporal dependencies. Similarly, Chen et al. (2025)
proposed a two-stream GCN-Transformer framework for skeleton-based
HAR, demonstrating strong improvements on various benchmark datasets.

Our work is directly inspired by these advances. However, unlike prior
efforts that primarily target video-based or multimodal HAR, we develop
a compact and efficient Transformer architecture tailored specifically to
raw smartphone IMU data. By eliminating recurrence and relying solely on
self-attention, our model captures both short- and long-range dependencies
effectively, while maintaining a low parameter count and high computational
efficiency. This enables fast convergence and robust performance across
diverse activity classes, setting it apart from conventional CNN or RNN-
based HAR pipelines.

METHODS

Dataset

In this study, we introduce MotionDetection, a smartphone-based dataset
collected to support the development and evaluation of deep learning models
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for human activity recognition. Data was recorded from 24 volunteer
participants representing diverse demographics in terms of age, gender,
height, and weight. Participants were equipped with a standard smartphone
(Samsung Galaxy Note 20 Ultra) placed naturally in the front pocket of
their trousers, mimicking common real-world smartphone usage without
additional attachments or specialized sensor positioning. All participants
wore flat shoes and were asked to perform six activities in a semi-
controlled environment to ensure consistency while preserving natural
motion patterns. The activities included walking, jogging, walking upstairs,
walking downstairs, sitting, standing.

Each activity was repeated across 15 trials per participant, comprising
both short-duration (≈30–60 seconds) and longer-duration (≈2–3 minutes)
sessions to capture variability in movement speed and context. Participants
initiated and terminated recording manually using the smartphone interface,
ensuring that the device placement remained consistent throughout each
activity session. The MotionDetection dataset was collected on a university
campus, utilizing predefined routes for dynamic activities (walking, jogging,
stairs) and designated seating/standing zones for static activities. Data
acquisition employed the SensingKit framework, capturing 12-channel
motion signals at a sampling rate of 50 Hz. The recorded features include
a) attitude: roll, pitch, yaw, b) gravity: x, y, z axes, c) user acceleration: x, y,
z axes, and d) rotation rate: x, y, z axes.

In total, the dataset comprises over 9,000 segmented windows after
preprocessing, with slight natural imbalance among activities due to
differences in recording durations (e.g., stair activities were inherently shorter
than level walking or jogging sessions). This realistic distribution reflects
practical activity patterns in daily life while maintaining sufficient coverage
for each class. To address minor class imbalance, we later applied synthetic
minority oversampling at the window level during training (described in
Section 3.2).

Data Preprocessing

To prepare the raw MotionDetection signals for model training, we applied
a systematic segmentation and labeling process followed by balancing
techniques to address class distribution.

The continuous 12-channel time-series data were segmented into
overlapping windows using a fixed-length sliding window approach. Each
window contained 50 consecutive samples, corresponding to approximately
one second of recorded motion data given the 50 Hz sampling rate. A step
size of 30 samples (i.e., 40% overlap between consecutive windows) was
used to ensure sufficient temporal coverage while minimizing redundancy.
Each segmented window was assigned a label based on the activity being
performed at the start of the window. This strategy is consistent with best
practices in sensor-based activity recognition, ensuring that window labels
accurately reflect the dominant activity present within each segment.

Formally, for a given time-series
{
Xt, yt

}
where Xt represents the

12-channel sensor readings at time t and yt the corresponding activity label,
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the k-th window Wk is defined as:

Wk =
{
Xt : t ∈

[
k.stepsize, k.stepsize + windowsize

]}
(1)

Before model training, all input features were standardized by subtracting
the mean and dividing by the standard deviation computed across the
entire training set. This normalization step ensures that all sensor channels
contribute equally during model optimization and mitigate bias due to
differing signal scales. Despite a relatively even trial design, natural variations
in activity durations resulted in slight class imbalance, particularly for
stair-related activities, which inherently involved shorter recording sessions
compared to level walking or jogging. To mitigate the risk of biased training
outcomes, we applied the Synthetic Minority Oversampling Technique
(SMOTE) at the window level. SMOTE synthesizes new training examples
for underrepresented classes by interpolating existing samples, thereby
enhancing the model’s exposure to minority class patterns without simple
duplication. The application of SMOTE ensured that each activity class
contributed roughly equally during model training, improving generalization
across all activities. After segmentation and balancing, the dataset comprised
approximately 9,400 labeled windows evenly distributed across the six
activity classes. These windows were subsequently partitioned into training
and validation sets using an 80%/20% stratified split, maintaining class
proportions in both subsets.

Model Architecture

The proposed model is based on a transformer encoder architecture tailored
for multivariate time-series classification using raw smartphone IMU signals.
The model processes each 50-sample input window as a sequence of sensor
readings, learning both local motion patterns and long-range temporal
dependencies without relying on recurrence. Each input segment is a matrix
of shape 50×12, where 50 denotes the number of timesteps and 12
corresponds to the IMU features (attitude, gravity, rotation rate, and user
acceleration along three axes each). The raw input is first passed through a
linear embedding layer that projects each 12-dimensional sensor reading into
a 512-dimensional latent space:

zt = Linear (Xt) , ∀t ∈ [1, . . . , 50] (2)

resulting in an embedded sequence of shape 50×512.
To inject temporal order information into the model, fixed sinusoidal

positional encodings are added to the embedded sequence. This enables
the transformer to distinguish between timesteps, a necessary feature given
its permutation-invariant self-attention mechanism. The resulting position-
aware sequence is denoted by:

Ź = Z + PE (3)

where PE is the positional encoding matrix.
The position-encoded sequence is passed through a stack of six transformer

encoder layers, each consisting of: a) multi-head self-attention with 8
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attention heads and model dimension of 512, b) feed-forward network
(FFN) with hidden size 2048 and ReLU, activation, c) Layer normalization,
residual connections, and dropout (0.5) applied to both attention and FFN
sub-blocks.

This stack enables the model to attend to dependencies across all 50
timesteps, capturing temporal correlations across the entire duration of
motion. The final output of the transformer encoder is a sequence of shape
50×512. To reduce this to a fixed-size representation, we apply temporal
mean pooling across the sequence dimension:

h =
1
T

T∑
t = 1

Zt, T = 50 (4)

The pooled vector h ∈ R512 is then goes through a dropout layer
(rate = 0.5) and a fully connected classification layer:

ŷ = Softmax(W.h + b) (5)

where W ∈ R6×512 and ŷ ∈ R6 contains the class probabilities for the six
activity types. The proposed model is summarized in Fig. 1.

Figure 1: The proposed model.
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Training Configuration

The proposed transformer model was trained end-to-end using supervised
learning. The dataset was divided into training (80%) and validation (20%)
sets using a stratified split to preserve class distribution. Each windowed
sequence of 50 IMU samples (with 40% overlap) was treated as an
independent instance and labeled according to the activity present at the
start of the window. Labels were encoded into integer class indices using
a standard label encoding strategy. The model was trained using the Adam
optimizer with a learning rate of 1×10−4. The loss function was categorical
cross-entropy, suitable for multi-class classification tasks. Dropout (0.5) was
applied after the transformer encoder and before the classification head to
improve generalization. No additional regularization techniques (e.g., weight
decay) were needed, as convergence was achieved with minimal overfitting.

Each training runwas performed on a free-tier Kaggle GPU instance, which
provided access to a single NVIDIA Tesla P100 with 16 GB of memory. The
batch size was set to 32, and the model was trained for 40 epochs. Training
typically completed within 10–12 minutes per run, with the validation loss
stabilizing well before the final epoch.

Evaluation was conducted on the held-out validation set, using overall
accuracy, precision, recall, F1-score (both macro- and weighted-average),
and the confusion matrix. To mitigate the effect of natural class imbalance
(especially in stair-related activities), we applied SMOTE oversampling to
the training set only. Validation data remained untouched to ensure fair
assessment of generalization.

RESULTS

The transformer model demonstrated strong classification performance
across all six activity classes in the MotionDetection dataset. Training was
stable and converged rapidly, with validation loss and accuracy curves
indicating minimal overfitting. The model consistently reached its optimal
performance within the first 10 epochs of the 40-epoch training schedule.
On the held-out validation set, the model achieved an overall classification
accuracy of 98.0%. The macro-averaged F1-score was 0.96, with a weighted
F1-score of 0.98, confirming robust performance across both majority and
minority classes. The precision, recall, and F1 metrics for each activity class
are summarized in Table 1.

Table 1: Per-class precision, recall, and F1-score for the six activities
in the MotionDetection dataset, based on predictions from
the transformer model.

Activity Precision Recall F1-Score

Downstairs 0.94 0.89 0.92
Upstairs 0.94 0.99 0.96
Walking 0.97 0.99 0.98
Jogging 0.99 1.00 1.00
Sitting 1.00 1.00 1.00
Standing 0.99 1.00 1.00
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Minor misclassifications occurred primarily between downstairs and
upstairs classes—an expected outcome due to the kinematic similarity
between these two types of stair-based locomotion. In contrast, static and
level-plane activities such as sitting, standing, walking, and jogging were
recognized with near-perfect consistency. Training and validation loss curves
remained closely aligned, with the validation loss stabilizing at approximately
0.11 and accuracy reaching a plateau near 98%. These results suggest the
model effectively captured temporal and spatial patterns within the motion
signals without overfitting.

Figures 2 and 3 illustrate the training curves and confusion matrix
respectively.

Figure 2: Training and validation loss and accuracy curves over 40 epochs. The
model converges rapidly, with minimal overfitting, and validation accuracy stabilizing
around 98%.

Figure 3: Confusion matrix of the transformer model on the validation set. Rows
represent true activity classes and columns predicted classes.
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DISCUSSION

The primary objective of this study was to investigate the effectiveness of
transformer-based neural networks for smartphone-based human activity
recognition. Our proposed transformer model demonstrated superior overall
accuracy compared to two commonly used baseline architectures, CNN-
BiLSTM and DeepConvLSTM, as clearly illustrated in the validation
accuracy progression shown in Figure X. The progression plot highlights
that the transformer model consistently outperformed the baseline methods
across the key training epochs (10, 20, 30, and 40), maintaining the highest
accuracy at every milestone. Although DeepConvLSTM exhibited a rapid
improvement, closely approaching the transformer’s performance at later
epochs, it still lagged slightly behind, reflecting the stronger capacity of
the transformer architecture to model temporal dependencies in multivariate
IMU data. The CNN-BiLSTM showed steady improvement yet consistently
underperformed compared to the transformer and DeepConvLSTM across
all epochs.

Figure 4: Comparison of validation accuracy progression at key epochs (10, 20,
30, 40) between the proposed transformer-based model and two baseline methods
(CNN-BiLSTM and DeepConvLSTM).

The distinct advantage of the transformer in handling sequential IMU data
is likely attributed to its self-attention mechanism, allowing simultaneous
consideration of both short-range and long-range temporal dependencies
without the drawbacks of recurrent architecture, such as gradient vanishing
or explosion. Consequently, the transformer model maintained more stable
and robust accuracy trends, converging rapidly and reliably, as depicted
clearly by the higher and steadier accuracy curve. The observed accuracy
plateau beyond epoch 30 suggests the transformer’s quick convergence and
effective learning capacity. Moreover, the slight narrowing of the accuracy
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gap at epoch 40 between transformers and DeepConvLSTM indicates that
deeper CNN-LSTM hybrid models can also achieve high performance, albeit
with potentially higher computational complexity or slower convergence
rates.

Overall, these results confirm the superiority of transformer architectures
for HAR applications. Their inherent computational efficiency, as
indicated by quicker convergence, and their robustness against overfitting,
make transformers especially suited for mobile and resource-constrained
environments.

CONCLUSION

In this study, we proposed a lightweight transformer-based neural network
specifically tailored for smartphone-based human activity recognition
(HAR) using raw inertial sensor signals. Our results indicate that
transformer architecture significantly outperforms conventional deep
learning approaches such as CNN-BiLSTM and DeepConvLSTM, achieving
superior accuracy, faster convergence, and enhanced robustness against
overfitting. The introduced MotionDetection dataset, collected under
realistic conditions, provided a robust testbed for evaluating our model.
With carefully implemented windowing and class-balancing techniques, our
transformer consistently demonstrated reliable classification performance,
particularly excelling in differentiating challenging activities like stair
climbing.

Future research directions include exploring transformer generalization
across diverse subject populations, investigating interpretability through
attention visualization, and optimizing the model further for real-time,
energy-efficient deployment on mobile devices. Overall, the findings
of this study confirm the potential of transformer architectures as a
powerful, scalable, and computationally efficient solution for practical HAR
applications.
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