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ABSTRACT

The electricity system is changing rapidly, due to the increasing efforts against climate
change. In the control room, power grid operators are already being challenged by
the changing system behaviour, and maintaining a high level of security of supply
is expected to become even more challenging in the future. To cope with these
challenges, new tools and functionalities, such as AI-based decision support tools
(DSTs) are needed. Developers of future DSTs must consider not only technical
aspects, but also whether new systems are usable by power system operators. This
study presents a case study of user experience (UX) evaluation applied to a DST
for power grid congestion management. The evaluation approach employs a broad
range of UX metrics. More precisely, we (i) introduce entirely new UX metrics based
on a cognitive analysis of the human-AI interactions, (ii) provide a questionnaire
and a set of tasks that are tailor-made for the DST to assess acceptance, trust, and
performance, and (iii) apply established generic questionnaires to assess usability
and workload. At the same time, the employed methods are mostly simple such
that the evaluation requires relatively low effort. The complete end-user population
participated in the study, and the DST exhibits high scores in almost all UX metrics.
The results form a baseline of summative user research which enables benchmarking
of future congestion management tools (or future releases of the same tool).
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INTRODUCTION

Introducing artificial intelligence (AI) and automation in safety-critical high-
risk domains requires that the whole work process of the joint human-
machine system is considered. With humans still crucially being in the loop,
the interaction between humans andAI presents challenges that stem from the
complex interplay of the necessity for robust and safe decision-making and
requirements for transparency, trust, and explainability (Leyli-Abadi et al.,
2025). In other words, human and AI capabilities need to be adequately
integrated to assure high performance, safety, and satisfaction (Lee et al.,
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2017). One way to assess the human-AI interaction is to perform a user
experience (UX) evaluation (Albert and Tullis, 2023).

In this study, we document a UX evaluation of the GridOptions tool
(Viebahn et al. 2024) which is one of the first AI-based decision-support
tools deployed in a control room of a Transmission System Operator
(TSO). A TSO is responsible for operating the high-voltage power grid.
Congestion is one of the major system risks for power grid operation. It
can cause cascading failures which eventually can lead to a major power
blackout. Congestion management is a real-world decision problem that
is characterized by large action and observation spaces (due to the vast
system size), sequentiality (including different time horizons), uncertainty
(e.g., due to weather-driven generation sources like renewable energy or
measurement errors), behavioural diversity, and multiple objectives (Viebahn
et al., 2022). Control centres provide groups of human operators with the
necessary working and decision-making environment to remotely monitor
the system and properly operate it in real time (Marot et al., 2022). However,
deploying AI-based decision support tooling in TSO control rooms is still in
its infancy.

The GridOptions tool represents one of the first AI-based decision support
tools that is deployed in a control room. It recommends to operators remedial
actions to prevent congestion in the intraday timeframe (i.e., within a 24-hour
forecast horizon). The underlying approach is based on quality-diversity
multi-objective optimization. That is, by providing evidence for and against
a range of possible options (instead of providing recommendations that can
only be accepted or rejected), it leverages human expertise in decision-making
and mitigates issues of over and under-reliance. Hence, the GridOptions tool
can be considered as a form of Evaluative AI (Miller, 2023).

In this study, we perform a UX evaluation of the GridOptions tool by
(i) introducing entirely new UX metrics based on a cognitive analysis of the
human-AI interactions, (ii) providing a questionnaire and a set of tasks that
are tailor-made for the GridOptions tool to assess acceptance, trust, and
performance, and (iii) applying established generic questionnaires to assess
usability and workload.More precisely, the article is structured as follows: In
the next section we give a more detailed description of the GridOptions tool
from a human factors perspective. Subsequently, we describe the different
methods employed in the UX evaluation. Finally, we present the results, and
we end with conclusions.

HUMAN ASPECTS OF THE GRIDOPTIONS TOOL

Regarding human-AI interaction and levels of automation, the GridOptions
tool currently features the assistance mode of human-AI interaction (EASA
2023, Leyli-Abadi et al., 2025). That is, all decisions are taken by the human,
and action implementation is fully allocated to the human operator. AI offers
cognitive assistance to the human in decision making and action selection.
For that, AI can feature high levels of automation in information acquisition
and information integration. Subsequently, AI may direct humans’ attention
to important system information, integrates it in intuitive and human-friendly
ways, and offers (a set of) possible actions.
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To describe what kind of cognitive work is being performed with the
GridOptions tool, we use the Levels of Autonomy in Cognitive Control
(LACC), proposed in Lundberg et al., 2019. The LACC differentiates between
cognitive work that is qualitatively different, in an abstraction hierarchy.
Cognitive work can be described at – or as involving – one or several
levels. We can describe and exemplify the LACC in power grid congestion
management as follows:

1. Physical. The location and status of the physical assets (e.g. lines,
transformers, breakers) of the power grid. For the operator, observing
the location and status of power grid elements, executing the giving of
directions for a specific switching action via telephone.

2. Implementation. A specific plan (i.e., sequence of actions), taking
constraints into account (e.g., voltage or current limits when operating a
specific breaker). For the operator, organizing the execution of a plan
with the colleagues in the control room, in substations, or at other
companies; limits on operator abilities to communicate with too many
co-workers at the same time.

3. Generic. A plan for substation reconfiguration, that can be potentially
reused, that must be adjusted to the congestion situation, as well as to
changing goals. Considering the operator, a procedure such as mitigating
congestion in a certain region.

4. Values. Performance indicators, such as the degree of safety and
efficiency that is achieved, as well as trade-offs such as prioritizing
safety over efficiency. Considering the operator, their workload can be
described at this level.

5. Goals. The goals that are generic to congestion management, such
as safety goals and efficiency goals. The goals that the operators are
currently concerned with in their work, such as having a backup plan for
possible forthcoming issues in the grid, serving customers, and avoiding
overloads by looking ahead.

6. Frames. Power grid situations, such as congestion, voltage violation,
maintenance execution – and the situations as observed by the operator.

METHOD

This study employs a lightweight methodology consisting of an easy-to-
implement set of techniques, including newly defined UXmetrics, tailor-made
tasks, and established generic questionnaires. Due to page limitations, the
questionnaires and tasks are not included in the article but can be shared on
request.

New UX Measures Based on Joint Control Framework

To assess cognitive patterns of human-AI interaction (CPHAI), we employ
the Joint Control Framework (JCF) (Lundberg and Johansson, 2021). The
JCF focuses on describing the execution of activities as processes (e.g.,
sensing, deciding, and action implementation) when those are distributed
over different cognitive levels (and possibly different agents) by putting
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(a sequence of) activities on a timeline and describing on which abstraction
level the system needs to be perceived. The cognitive levels correspond to the
six LACC described in the previous section.

The JCF can be used for both (i) describing actual (e.g., recorded)
human-machine interactions for a given user interface, and (ii) designing
a user interface by mapping out the expected human-machine interactions.
Discrepancies between actual and expected interaction patterns can hint at
design flaws. Consequently, we introduce two new UX metrics. The CPHAI
design accuracy (CPHAI-DA) measures the similarity between the expected
and the measured CPHAI. The CPHAI consistency across users (CPHAI-CU)
measures how variable the CPHAI are across the user population.

Tailor-Made Set of Tasks and Questionnaire

To assess performance, we measure the performance metric task success. It
measures how effectively users are able to complete a given task (Albert and
Tullis, 2023). Realistic tasks are often composed of a series of sub-tasks.
Hence, we a perform a cognitive walkthrough (Rieman et al., 1995) with the
human operators. This usability evaluation method relies on a detailed series
of sub-tasks, and it is specifically limited to considering whether the user will
select each of the correct actions along the solution path. The walkthrough
procedure consists of a specific description of the sub-tasks to be performed
with the system, and a list of the correct actions required to complete each of
these tasks with the interface being evaluated. We custom-designed 11 sub-
tasks for the GridOptions tool. For each sub-task, we measure the level of
success: failure (the user gave up or thought it was complete, but it wasn’t),
partial success (with assistance), complete success (without assistance).

To assess the acceptance of the user groupwith respect to the AI component
of the decision support tool, we created a tailor-made questionnaire based
on the Madsen and Gregor’s Trust questionnaire (Long et al., 2020).
The questionnaire specifically focuses on measuring general confidence and
familiarity with AI decision support tools as well as acceptance (after initial
use) for daily use.

Established Questionnaires for Workload and Usability

To assess the perceived workload, we employ the multidimensional NASA
Task Load Index (NASA-TLX) (Hart and Staveland, 1988). There are six
scales for TLX: Mental Demand, Physical Demand, Temporal Demand,
Frustration, Effort, and Performance. Respondents rate the system on each
of the six dimensions using 10-point scales from Low to High.

To assess the perceived usability, we employ the widely used System
Usability Scale (SUS) (Perrier et al., 2023). It consists of 10 statements to
which users rate their level of agreement. Half of the statements are positively
worded and half negatively worded. A 5-point Likert scale of agreement is
used for each.

Experimental Setup

The user group of the GridOptions tool currently consists of 8 the senior
operators. The entire population was available for this study. All sessions
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were carried out in the control room, and with one operator per session.
The sessions happened in two waves. In the first wave, a session was hold
with each of the 8 senior operators in which the Trust and Acceptance
questionnaire was filled in and the cognitive walkthrough was performed.
The second wave of sessions included three of the 8 operators. Two operators
were chosen based on their excellent performance results in the cognitive
walkthrough (i.e., task success) to make sure that the subsequent measures
were not influenced by unfamiliarity with the tool. Moreover, to check
if this could have any influence at all, a third operator was chosen with
less good performance results. With each of the three operators a session
was conducted in which they received a small number of high-level tasks.
They freely executed each task while these episodes of human-AI interaction
were recorded. Subsequently, the operators filled in the NASA-TLX and SUS
questionnaires.

RESULTS

Cognitive Patterns of Human-AI Interaction

Figure 1 shows the JCF drawing derived from the recordings of the human
operators interacting with the GridOptions tool. In Table 1, each step
is characterized in detail. The overall CPHAI consists of three sub-tasks,
namely, Start, Problem Identification, and Problem Solving. In the first step,
the highest-level framing of the situation occurs, that is, the decision by
the operator to perform the congestion analysis of the next day using the
GridOptions tool. Subsequently, the operator opens the GridOptions tool.
In the third step, the operator decides which model data exactly needs to be
used, and in the fourth step the operator activates the corresponding data in
the GridOptions tool. The fourth step is the only action point which is not
on the Tool level since it is currently the only action in the GridOptions tool
which determines the data shown in all subsequent views. All other action
points only select specific views of pre-determined data.

Figure 1: JCF drawing of how human operators interact with the GridOptions tool.
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With step 5 the problem identification begins. The operator perceives a
high-level overview table of the default strategy. Then the operator identifies
the congested hours (step 6), and subsequently decides to take a more detailed
look (step 7). In step 8, an additional table with more detailed information
related to the default strategy is opened. The operator investigates which grid
elements exactly are overloaded (step 9), and how much different elements
are overloaded relative to each other (step 10). This concludes the problem
identification sub-task.

With step 11 the operator initiates problem solving. The operator decides
that remedial actions are needed. For that, he enlarges the high-level overview
table with additional strategies proposed by the GridOptions tool (step 12).
Subsequently, a cognitive sub-pattern of human-AI interaction occurs that
already appeared in the problem identification sub-task (compare steps 5–10
and 13–18). The difference is that now the operator looks at strategies that
mitigate the congestion observed in the default strategy. Finally, in steps 19–
20 the operator opens a substation view in order to see which switching
actions exactly are needed to mitigate the congestion.

Table 1: JCF table of human operators interact with the GridOptions tool.

STEP QUESTION LEVEL POINT SUB-TASK DESCRIPTION

1 Why Frames Decision (D) Start Do congestion analysis
2 How Tool Action (A) Start Open decision-support tool
3 What Values Decision (D) Start Decide on day and version
4 How Physical Action (A) Start Choose the data source
5 What Generic Perception (P) Identification Look at high-level default strategy
6 What Values Decision (D) Identification Identify congestion
7 What Values Decision (D) Identification Decide to see more details
8 How Tool Action (A) Identification Open detailed load flow table
9 How Physical Perception (P) Identification Look at specific grid elements
10 How Imp Perception (P) Identification Identify element loading in space
11 Why Effect Decision (D) Solution Remedial actions are needed
12 How Tool Action (A) Solution Add strategies to high-level table
13 What Generic Perception (P) Solution Look at high-level strategies
14 What Values Decision (D) Solution Identify best strategy
15 What Values Decision (D) Solution Decide to see more details
16 How Tool Action (A) Solution Open detailed load flow table
17 How Physical Perception (P) Solution Look at specific grid elements
18 How Imp Perception (P) Solution Identify element loading in space
19 How Tool Action (A) Solution Open substation drawing
20 How Physical Perception (P) Solution See exact switching actions

Table 2 shows the scores for the two new UX metrics CPHAI-DA and
CPHAI-CU. The CPHAI-DA is 100% which indicates that the users did not
exhibit any unexpected behaviour. In other words, the CPHAI shown in
Fig. 1 is exactly as expected by design, no unforeseen interactions happened.
Moreover, CPHAI-CU is very close to 100%. This means that the individual
CPHAI of the different operators are very similar. The only observed
deviations from the CPHAI shown in Fig. 1 are related to operators omitting
steps 19–20 at times since they already know the specific switching actions.
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Table 2: Scores of the different UX metrics. All scores range between 0 and 100.
The mean and standard deviation (sd) across users are shown except
for the CPHAI metrics. The CPHAI metrics are computed as 100 – sd
with the CPHAI shown in Fig. 1 used as mean.

Metric Score # Users Interpretation

Design accuracy 100 3 Perfect match
Consistency across users 99.3 3 Very high consistency
Performance 90 ± 6.1 8 High task success
Workload 0.0 ± 0.0 3 Minimal workload
Usability 91.7 ± 0.5 3 Excellent usability
Trust 69.2 ± 2.0 8 Moderate trust

Task Success

Figure 2 shows the results of the cognitive walkthrough per operator.
Operators 1–4 exhibit perfect performance, that is, they completed all tasks
flawlessly without encountering any issues. Also operators 5–6 could handle
the tool on their own except for the last tasks related to the substation
drawings where they asked a question. Finally, operators 7–8 more often
asked for assistance but still could proceed to the end. In summary, all
operators were able to complete the entire cognitive walkthrough (i.e., no
single failure) and most of them could work without assistance. This is also
reflected in the high overall performance score in Table 2.

Figure 2: Results of the cognitive walkthrough per operator.
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Workload and Usability

Figure 3 shows the perceived workload per operator, and the corresponding
overall score is shown in Table 2. The results indicate that the perceived
workload is minimal. In all ‘negative’ dimensions (Mental Demand, Physical
Demand, Temporal Demand, Frustration, Effort) are rated very low, whereas
performance is rated very high for all operators.

Similarly, the perceived usability has a high overall score as shown in
Table 2. The ‘negative’ dimensions (complex, support needed, inconsistency,
heavy to use, a lot of learning required) are all rated very low for all operators
(not shown), whereas the rating of the ‘positive’ dimensions (use frequently,
easy to use, well integrated, learn quickly, confident usage) are rated high
except for ‘well integrated’ with values of 3–4.

Figure 3: Results of the NASA-TLX per operator.

Figure 4: Results of the AI trust and acceptance questionnaire.
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AI Trust and Acceptance

Finally, Figure 4 shows the results of the AI trust and acceptance survey. The
user group exhibits low familiarity with AI tools, shows diversity regarding
the need for transparency, and is neutral in relying on AI. Regarding the
potential of AI in supporting the operator’s work the (rather conservative)
user group is positive. Hence, the overall sentiment towards AI decision
support tools is moderately positive (see Table 2).

DISCUSSION

This study forms a baseline of summative UX research which enables
benchmarking of future congestion management tools (or future releases of
the same tool). Using a broad range of UX metrics, the study demonstrates
how an AI-based DST can be evaluated in a quantitative and multifaceted
way with relatively low effort. The results indicate that even for a user group
with moderate trust the DST exhibits favourable overall scores in terms of
usability, workload, and consistency across users.

The setup can be extended in several directions. First, it would be
interesting to see if different participants or different test situations would
lead to different results. Regarding the trust scale, people with a lower score
might act differently when using AI tools. With low workload (as reported
here), they would be expected to (want to) check the AI more when testing it.
Whether usage of this tool supports the building of trust from a low starting
point is thus an open question. It is also possible that a high workload or
otherwise more stressful situation would give other outcomes. The test did
not include situations where the AI would give a less ideal solution, further
tests could include testing whether detecting and addressing these issues are
also supported by the tool, and how this is shown in the different analyses.
Since the participants did not do many mis-steps here, recovery is another
avenue for further study.

Second, the JCF analysis could be complemented by additional scores. For
example, the JCF showed that some steps were optional due to experience
(having built mental models), and also showed repeat patterns in the
interactions. Potentially, the two CPHAI scores proposed here could be
complemented with a repeat patterns score, in larger systems.

Finally, the used AI-based DST (i.e., the GridOptions tool) is still
rather simple and could be advanced in several directions (outlined in
Leyli-Abadi et al., 2025). In particular, the DST currently only features
the assistance mode of human-AI interaction. Future releases might also
feature a teaming mode of human-AI interaction including more extensive
collaboration and cooperation between human and AI (EASA, 2023). In this
case, the JCF analysis would also include cognitive levels on the AI side which
would lead to more complex and divers CPHAI, again potentially motivating
complementary UX metrics.
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