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ABSTRACT

This study investigates how machine-assisted motion analysis can contribute to the
prevention of pressure ulcers in bedridden patients. Pressure ulcers develop from
prolonged pressure impairing blood circulation, especially in immobile individuals.
Early detection of critical movement patterns is essential for initiating timely
repositioning. This study aims to define a movement threshold via machine
learning algorithms that distinguishes between insufficient, adequate, and excessive
movement. Continuous and interval-based classification methods are employed,
incorporating skin temperature variations as indicators of reduced circulation. A Pixel
Watch 3 is used to collect movement data from different body positions including
chest, abdomen and ankle to determine optimal placement for reliable classification.
Sensors include an accelerometer, gyroscope, posture, skin temperature, and
heart rate sensors. Ten participants perform five defined micro-movements, with
20 labeled sequences per movement, sampled at 20 Hz across three positions,
resulting in 8.4 million data records. A machine-learning model is developed to detect
deficiencies early and alert caregivers. The system enables targeted interventions
and demonstrates the Pixel Watch 3’s efficacy as a precise monitoring tool. Findings
support the integration of wearable sensor technologies and machine learning into
intelligent care systems, improving documentation efficiency and pressure ulcer
prevention. The system is tested experimentally to assess its practicality in real-world
care structures.
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INTRODUCTION

The most recent report on pressure ulcer prevention by the Institute for
Quality Assurance and Transparency in Healthcare (IQTIG, 2024) reveals
that 67,636 hospital-acquired pressure ulcers were documented in Germany
in 2023, accounting for 0.4367% of all inpatients. Alarmingly, nearly 50%
of those affected were over 80 years old. These figures highlight the ongoing
challenge of pressure ulcers in the German healthcare system, especially
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among elderly and immobile patients (Tomova-Simitchieva et al., 2019).
Despite preventive measures, pressure ulcers remain a significant issue due to
their association with longer hospital stays, increased healthcare costs, and
decreased quality of life, indicating an urgent need for innovative prevention
strategies.

Recent advancements in sensor technology and machine learning provide
new opportunities for automated movement pattern analysis. Smartwatches
with integrated motion sensors are a promising technology for continuous
monitoring of micro-movements. Intelligent analysis of sensor data could
help identify individual movement patterns and alert nursing staff in real-time
if insufficient self-mobilization is detected.

This study explores the use of smartwatches to detect micro-movements
in the context of pressure ulcer prevention, aiming to reliably determine an
optimal movement threshold for bedridden patients using machine learning
methods. The study investigates whether and to what extent a commercially
available smartwatch with integrated motion sensors can reliably detect and
classify subtle movement patterns. It specifically examines which of five
predefined movements can be detected with the highest accuracy and at
which body location (abdomen, chest, ankle). Furthermore, it evaluates
which sensor placements yield the most accurate data for detecting micro-
movements and which algorithms are best suited for classifying such
movements reliably.

To address these questions, an experimental approach is used, where the
Google Pixel Watch 3 is attached to three different body locations to record
targeted movements of test subjects. The resulting sensor data is analyzed
with various machine learning methods to develop a classification model for
micro-movements. This analysis aims to offer a solid understanding of how
an optimal movement threshold can be defined to support effective pressure
ulcer prevention.

The long-term goal of this research is to develop an automated alert system
for nursing professionals that provides early warnings about insufficient
movement, reducing the risk of pressure ulcer development. Such a system
could improve care quality, reduce the workload of nursing staff, and
sustainably enhance the quality of life for immobile patients.

Additionally, this work seeks to contribute to the broader discourse on
digital health by demonstrating how consumer-grade wearable devices can
be repurposed for clinical applications. The integration of such technologies
into routine patient care could lead to scalable and cost-effective solutions for
long-standing problems in hospital environments. Moreover, by leveraging
real-time data processing and adaptive machine learning models, it becomes
possible to create dynamic feedback systems that adjust to individual patient
needs. This personalization aspect is particularly important in geriatric care,
where standardized interventions often fail to accommodate the complexity
of individual health conditions. Ultimately, the insights gained from this
study may serve as a foundation for future interdisciplinary research at the
intersection of healthcare, data science, and wearable computing.

This thesis includes the following sections: Related Work reviews research
on pressure ulcer prevention, wearables for activity recognition, and machine
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learning for sensor data analysis. Project Structure outlines the project,
classification model, and machine learning tools. Activity Recognition
describes the methodology, classification process, and experimental
setup. Evaluation presents the experimental results on micro-movement
detection. Finally, Conclusion summarizes key findings and discusses future
developments and applications.

RELATED WORK

This section reviews related work on pressure ulcer prevention, human
activity recognition, and wearable technologies, focusing on both traditional
nursing interventions and technological approaches to analyzing physical
inactivity. Special attention is given to recent advances in sensor-based
monitoring with smartwatches and machine learning methods like Long
Short-Term Memory (LSTM) models, which form the basis of this study
on smartwatch-based micro-movement detection for early pressure ulcer
prevention. According to the German Network for Quality Development
in Nursing (DNQP) (Niemann et al., 2017), a pressure ulcer is defined as
a localized injury to the skin and/or underlying tissue, usually over a bony
prominence, caused by sustained pressure or shear. Pressure ulcers remain
a major healthcare challenge. A systematic review by Tomova-Simitchieva
et al. reported a prevalence of 2% to 5% in long-term care and at least
2% in hospitals in Germany, stressing the need for improved prevention
(Tomova-Simitchieva et al., 2019). Common strategies include repositioning,
pressure-relieving mattresses, and physical movement (Santamaria et al.,
2018), with high-quality mattresses significantly reducing risk (McInnes
et al., 2015) and regular skin inspections playing a crucial role (Niemann
et al., 2017). Schröder & Kottner also emphasized micro-movements as an
innovative preventive concept to distribute pressure more evenly (Schröder
& Kottner, 2011).

Technological approaches for early detection of inactivity are increasingly
explored, with Human Activity Recognition (HAR) systems gaining
importance in healthcare (Döbel et al., 2018). Smartwatches equipped with
motion sensors, combined with machine learning methods like LSTM, allow
real-time monitoring and targeted interventions to prevent pressure ulcers
(Gefen et al., 2020).

Sridharan et al. developed a beacon-based system achieving 85%
classification accuracy in home care, while this study deliberately focuses on
smartwatch-integrated sensors for location-independent detection (Sridharan
et al., 2020). Nurwulan & Selemaj investigated machine learning algorithms
for classifying deliberate daily activities, finding Random Forest (RF) most
accurate; in contrast, the present study targets involuntary micro-movements
(Nurwulan & Selemaj, 2020). Bed-based systems like DIY PressMat
(Matthies et al., 2021) and RFID-based bed-exit detection (Wickramasinghe
& Ranasinghe, 2017) showed limitations in detecting subtle movements.
Similarly, Sutton-Charani et al. used mattress pressure sensors to analyze
micro-movements, but their method relied only on static pressure data
(Sutton-Charani et al., 2022).
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Overall, the reviewed studies underline the potential of smartwatches
to advance healthcare through the sophisticated classification of human
activities, offering new opportunities for individualized, technology-
supported care.

PROJECT STRUCTURE

To illustrate the prototype, this chapter is structured into two main
components: data aggregation and machine learning tools. The former
involves the collection, labeling, and visualization of motion data using the
activity recognition classifier. The machine learning tools serve the purposes
of processing, training, and evaluating algorithms. Figure 1 illustrates the
system architecture, depicting the entire data flow – from generation
and aggregation to visualization and classification. The foundation is the
activity recognition classifier described by Staab, which enables efficient data
acquisition, visualization, and labeling through a seamless communication
interface between the smartwatch and the web server (Staab et al., 2024).
Data transmission is carried out in real time via WebSockets, as outlined
by Ogundeyi and Yinka-Banjo (Ogundeyi & Yinka-Banjo, 2019). The
data collected on the smartwatch are transmitted to a website via a
TCP/IP connection using a NodeJS WebSocket, where they are immediately
processed, displayed, and analyzed.

Figure 1: Overview of the system architecture.

The activity recognition system visualizes sensor data in real time and
enables the creation and management of activity labels. It displays the
connected smartwatches and ensures that data is transmitted at specified
intervals. Before data collection begins, the smartwatches undergo a
calibration process to standardize the initial position. All collected data is
transmitted and stored in real time in a MySQL database. The collected
sensor data includes three-dimensional motion data (x-, y-, and z-axes) from
accelerometer, gyroscope, gravity, and orientation sensors, supplemented by
heart rate data and acoustic measurements (decibels and magnitude). This
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comprehensive suite of sensors facilitates a detailed analysis and comparative
evaluation of the performance of different smartwatch models.

For the analysis, two specialized tools are used: an AutoML training
tool and an LSTM training tool. Both tools offer flexible configuration
options for experimental setups and provide a robust assessment of the
algorithms employed, ensuring thorough evaluation and optimization.
Figure 2 illustrates these machine learning tools and the available options
for configuring experimental parameters, including the selection of sensors,
algorithms, and evaluation methods.

To automate the modeling and analysis of sensor-based activity data, a
comprehensive machine learning training tool has been developed, which
integrates both classicalML algorithms and LSTMmodels. The user interface
allows for a structured execution of training and evaluation processes.
Initially, activities to be classified, such as pelvic tilt, foot movement,
hip rotation, torso tilt, and shoulder swing, are selected, followed by
the choice of users for training and test data. Users can further decide
between a training/test split or cross-validation. Subsequently, relevant sensor
features, including acceleration data, gyroscope data, gravity data, heart
rate, or audio data, are selected. Afterward, various models are trained
and evaluated, with results visualized immediately after model execution.
Standardized performance metrics like accuracy, precision, recall, and F1-
score are presented to assess model quality. A wide range of algorithms
is used, including MLP, support vector machines (SVC), decision trees,
random forests, k-nearest neighbors (k-NN), gradient boosting, XGBoost,
LightGBM, and specialized methods like LSTM models to capture temporal
dependencies in sensor data.

Figure 2: Auto-ML training tool for model execution and evaluation.

For the LSTMmodels, hyperparameters such as window size (default: 120
data points) and number of epochs (default: 40) are configurable.

Through its modular structure and real-time processing, the tool
provides a powerful environment for evaluating and optimizing the sensor
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performance of the Google Pixel Watch 3 across various smartwatch
models. It offers a solid foundation for the automated detection of physical
activities, contributing to the increased efficiency of wearable technologies in
healthcare, particularly in the context of relieving caregiving tasks.

Figure 3 shows a bar chart generated by the LSTM model to visualize the
classification probabilities of activities in a caregiving context, based on real-
time data from the Google Pixel Watch. The Y-axis represents the probability,
and the X-axis represents the classification time. Each activity is represented
by a specific color. Since probabilities for all four classes are calculated
per classification, the total always sums to 100%. This visualization allows
caregivers to gain near real-time insight into the recognized activity of their
patients.

Figure 3: Example of a chart generated by the LSTM system to display the classification
probabilities of caregiving activities.

ACTIVITY RECOGNITION

The data collection was carried out using the Google Pixel Watch 3, which
continuously records motion signals at a sampling rate of 20 Hz. A total of
ten participants took part in the experiment. The smartwatch was attached
to three different body locations. It was placed on the right ankle (Figure 4,
left), on the abdomen at the level of the navel (Figure 4, center), and on the
chest, just below the breast (Figure 4 right).

Figure 4: Smartwatch positioning.

According to Staab et al., the smartwatch is equipped with several sensors
that enable precise motion capture (Staab et al., 2024). For the tests, an
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accelerometer, gyroscope, gravity sensor, orientation sensor, and a magnitude
sensor were used, with data recorded at a sampling rate of 20 Hz. Each
sensor provided three-dimensional motion data along the x-, y-, and z-axes,
resulting in twelve features, plus an additional magnitude value, leading to
a total of thirteen measured values per sample. Each of the ten participants
performed five different micro-movements at three body locations – chest,
abdomen, and ankle – while lying supine on a hospital bed to simulate
typical pressure redistributions. For every movement, 200 data points were
recorded over a period of ten seconds. Thus, for one movement at one body
location, 14 features multiplied by 200 data points resulted in 2,800 data
points. Considering five movements per location, this yielded 14,000 data
points. As each movement was repeated twenty times for robustness, the
total amount of data per body location for each participant was 280,000
data points. Since measurements were performed at three different body
locations, this led to 840,000 data points per participant. With a total of
ten participants, the complete dataset comprised 8,400,000 data points. In
addition to active movement phases, periods of complete immobility were
recorded to serve as a baseline for detecting subtle differences in movement
patterns. The movements investigated included hip rotation, pelvic tilting,
foot movement, shoulder swinging, and torso tilting. These activities aimed
to relieve pressure from particularly vulnerable areas such as the sacrum,
coccyx, heels, and shoulders, following pressure-relieving strategies described
by Schröder & Kottner and recommended by the Institute for Quality
Assurance and Transparency in Healthcare (IQTIG) (Schröder & Kottner,
2011) (IQTIG, 2024). Figure 5 illustrates the performed micro-movements:
(a) Hip Rotation, (b) Pelvic Tilting, (c) Foot Movement, (d) Shoulder
Swinging, and (e) Torso Tilting.

Figure 5: Micro-movements: (a) hip rotation, (b) pelvic tilting, (c) foot movement,
(d) shoulder swinging, (e) torso tilting.
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EVALUATION

The evaluation investigates the ability to distinguish identical movements at
different body locations and to separate movement from non-movement. The
findings show that LSTM models are particularly effective in recognizing
movements like pelvic tilting and torso tilting across various sensor positions,
although recognition accuracy is strongly influenced by body location,
sensor type, and the algorithm used. Classification accuracy serves as
the primary performance metric, indicating the proportion of correctly
recognized activities. While LSTM achieves the highest overall accuracy,
other algorithms like CatBoost perform better for specific movements, such
as foot movement. The results, presented in Table 1, show that LSTM
achieves the highest accuracy for movements like pelvic tilting and upper
body tilting, reaching 88.86% and 86.26%, particularly when sensors are
positioned at the chest. However, no single algorithm performs optimally
across all activities. CatBoost, for example, detects foot movements with
70% accuracy, outperforming LSTM, which reaches only 35.82%. Other
algorithms, such as GaussianNB and QDA, show lower performance for
hip rotation (39.50%) and upper body tilting (52.78%), respectively.
These findings underline the challenge of differentiating subtle movements,
particularly for complex or less pronounced activities.

Movements originating from the core, like pelvic tilting, hip rotation,
and upper body tilting, are generally distinguishable across different body
locations, especially with sensors on the abdomen, chest, and ankle. In
contrast, foot movements and shoulder swinging achieve lower classification
rates, and movement detection at the ankle proves less reliable, likely due
to signal similarities near the body’s center and the difficulty in capturing
fine limb movements. Overall, the study highlights that sensor placement,
algorithm selection, and sensor types significantly impact recognition
accuracy. While LSTM models demonstrate strong potential, optimizing
sensor configurations remains essential for reliably detecting more difficult
movements. Future research should therefore focus on exploring alternative
sensor setups and algorithmic adaptations.

Table 1: Prediction accuracy of individual models per movement and body location –
based on combined sensor data from all positions, averaged.

Model Pelvic Tilting
BA, BR, F

Foot
Movement BA,

BR, F

Hip Rotation
BA, BR, F

Upper Body
Tilt BA, BR, F

Shoulder
Swinging BA,

BR, F

LSTM 88,86 % 35,82 % 65,01 % 86,26 % 85,63 %
Cat Boost 72,17 % 70,00 % 58,67 % 68,19 % 73,83%
Extra Trees 70,58% 69,17 % 56,75% 67,36 % 74,33 %
Stacking 70,33% 69,17 % 56,33% 65,56% 69,33%
Light GBM 72,25 % 68,33 % 58,17 % 66,94 % 74,58 %
Random Forest 72,75 % 66,67 % 58,25 % 64,58% 75,00 %
Gaussian NB 46,00% 45,00% 39,50 % 53,03% 64,92%
XG Boost 72,08% 65,83% 57,08% 65,14% 72,75%
SGD Classifier 37,75 % 47,50% 42,42% 55,28% 50,58 %
QDA 54,08% 44,17% 42,42% 56,81% 68,17%
Gradient Boost 71,58% 64,17% 55,83% 67,36 % 75,83 %
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The analysis of the LSTM model’s ability to distinguish movement
from non-movement, based on separate models for each movement at
three body locations, shows that sensor combinations using gyroscope and
accelerometer data achieved the highest classification accuracy. At the ankle,
for instance, configuration K18 reached an accuracy of 79.34%. In contrast,
standalone sensors, such as the magnitude sensor, resulted in significantly
lower accuracies. The results presented in Table 2 confirm that LSTM
models can reliably differentiate between movement and rest phases when
suitable sensor combinations are used, particularly in the chest region, where
classification accuracy exceeded 99%. An exception is shoulder swinging,
which was detected with a comparatively lower accuracy of 82.82% in the
chest area.

Table 2: Accuracy of movement vs. non-movement by body location.

Movement Chest Accuracy Abdomen Accuracy Ankle Accuracy

Hip Rotation 99,63 % 99,81 % 99,92 %
Shoulder Swinging 82,82 % 98,59 % 99,85 %
Pelvic Tilt 99,91 % 99,86 % 99,52 %
Upper Body Tilt 99,72 % 99,01 % 98,83 %
Foot Movement 99,72 % 64,55 % 99,76 %

The abdominal region also shows high accuracy levels, but detection
performance declines significantly for foot movements, with accuracy
dropping to 64.55%. This indicates that lower limb movements are harder
to detect from this location. Sensors placed at the ankle deliver very strong
results, comparable to those in the chest region. Notably, the detection rates
for hip rotation and foot movement are near perfect, achieving 99.92%
and 99.76% accuracy, respectively. The evaluation shows that the LSTM
model reliably distinguishes between movement and rest states, particularly
for core body activities such as pelvic tilting, hip rotation, and upper body
tilting. The highest classification accuracies are achieved with sensors placed
in the chest region, while movement detection of the lower extremities,
especially from the abdominal region, proves less reliable. Overall, the results
confirm the potential of the LSTM model for precise activity recognition,
emphasizing the critical role of sensor placement in model performance.
The analysis further highlights that LSTM models achieve consistently high
classification accuracy, particularly for central movement patterns, when
sensors are positioned around the body’s core.

However, accuracy varies depending on the body location and specific
movements. The differentiation between movement and non-movement
is especially reliable for activities initiated from the body’s center. These
findings emphasize the importance of targeted, body-location-specific sensor
placement to optimize recognition performance, particularly for movements
that are more difficult to detect.
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CONCLUSION

This study demonstrates the significant potential of machine learning
algorithms, particularly LSTM models, in reliably detecting micro-
movements for pressure ulcer prevention. The results show that LSTM can
distinguish between movement and non-movement with over 99% accuracy,
marking a key step toward an automated alert system for pressure ulcer
prevention. However, variations in accuracy were observed depending on
the body location, sensor combination, and algorithm used. Movements
from the body’s core, such as pelvic tilting, upper body tilting, and hip
rotation, were recognized more reliably than movements of the extremities,
especially at the ankle. The chest region yielded the best results for LSTM,
while CatBoost outperformed LSTM in recognizing foot movements. These
findings highlight the importance of selecting appropriate sensor positions
and types for accurate movement detection.

For practical applications, a movement recognition system must not only
detect motion but also assess offloading of high-risk body areas. The system
must be adaptable to individual movement patterns and high-risk areas for
personalized pressure ulcer prevention. The study lays the foundation for
intelligent, wearable systems that provide continuous, automated monitoring
of movements, which could reduce pressure ulcer risk, ease caregiver burden,
and support tailored prophylactic strategies. This represents a promising step
toward more effective and patient-centered pressure ulcer prevention.
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