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ABSTRACT

Eye Tracking (ET) is used across various fields to study visual attention, cognitive
load, and decision-making by measuring where individuals look and how long they
focus on specific elements. A major challenge in processing ET data is mapping
gaze points to dynamic Areas of Interest (AOIs) while accounting for data variability
and head movements. This study aims to systematically compare and evaluate
methods for automated gaze-to-AOI mapping across three experimental conditions
with varying levels of control, in order to improve efficiency and accuracy in gaze
analysis. An analytical software based on ArUco-markers was developed to automate
gaze mapping to AOIs with three different methods: (1) marker-based mapping,
and homography-based mapping implemented using either (2) manually specified
reference points or (3) automated feature detection algorithms. All three methods
were compared against two baselines: manual gaze mapping and assisted mapping
using a commercial ET software. Overall, the results indicate that the performance of
automated gaze-to-AOI mapping methods is highly sensitive to experimental context
and the specific configuration of AOIs. Under laboratory conditions, automated
gaze mapping methods achieved accuracy (97%) and F1-scores (97%) comparable
to manual mapping. In complex field study settings, the performance varied, and
accuracy dropped (14% to 77%) due to varying conditions regarding sudden transition
in lighting and real-time dynamics of the situation. The manual reference point-
based method demonstrated consistently high accuracy across all experimental
conditions. Only manual mapping remained highly accurate in both field study
conditions but required considerably more processing time. Future work will focus on
improving the robustness of the proposed method in dynamic environments through
adaptive reference image selection. This enhancement is expected to increase the
accuracy of gaze-to-AOI mapping and enable real-time monitoring of visual attention
in complex, safety-critical contexts. Such advancements will support the development
of resilient, adaptive human-machine systems capable of dynamically responding to
operator conditions, thereby reducing the risk of human error and improving overall
performance.
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INTRODUCTION

In an increasingly automated and data-driven world, understanding how
humans perceive and interact with technical systems and their environment
is crucial for fostering effective human-machine collaboration, ensuring that
machines complement human capabilities and enhance overall performance.
Eye tracking (ET) is a well-established method to gain insights into human
cognitive processes used across aviation, automotive systems, industrial
control rooms, or consumer product testing. By capturing where, for how
long and in what sequence a person focuses their visual attention, ET allows
to understand cognitive workload, analyse decision-making, and assess
human performance in both laboratory and field study environments.

ET has evolved from a niche method to a widely used technology
(Valliappan et al., 2020). As ET becomes more accessible, its applications
are expanding across various industries (Martinez-Marquez et al., 2021;
Hebbar et al., 2022; Xu et al., 2018; Tahri Sqalli et al., 2023; Kim &
Lee, 2021). Industries are increasingly recognizing the need to efficiently and
accurately analyse gaze data in relation to specific Areas of Interest (AOIs)
within dynamic visual environments.

Mapping raw gaze data to AOIs is an error-prone and time-intensive task
when done manually, especially in dynamic scenes with moving AOIs or
unfixed head positions. These challenges highlight the need for automated,
robust, and scalable mapping methods (Justinussen, 2025) (Kopácsi et al.,
2023). Approaches that address mapping limitations have been developed.
Machine learning approaches like Computational Gaze-Object Mapping
(cGOM) (Wolf et al., 2018), and AutoAOIs scale well to dynamic AOIs
(Justinussen, 2025). Methods such as Interactive Machine learning for
Efficient Tracking of AOIs (IMETA) blend manual labelling with Machine
Learning to cut annotation time (Kopácsi et al., 2023). Marker-based
systems (e.g., ArUco) offer accuracy in static, laboratory scenes (Barz &
Sonntag, 2021; Bykowski & Kupiński, 2018). For naturalistic settings,
3D reconstruction methods like MAP3D enable marker-free gaze projection
onto spatial models, though at high computational cost (Stein et al., 2023;
Bykowski & Kupiński, 2018). An overview of strengths and weaknesses of
these methods is provided in Table 1.

Table 1: Comparison of different gaze mapping methods.

Method Strengths Weaknesses

Manual mapping High accuracy in laboratory
settings

Time-consuming,
error-prone, not scalable

Manual mapping + head
tracking

Improved accuracy Expensive hardware,
calibration and space
requirements

Marker-based systems (e.g.
ArUco)

Fast, stable reference in static
scenes

Visually intrusive, lab-bound

Machine learning (e.g.
cGOM)

Scalable, handles dynamic
AOIs

Requires labelled training
data

Continued
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Table 1: Continued

Method Strengths Weaknesses

Semi-automatic (e.g. IMETA) Reduces manual effort,
balances control

Needs initial labelling,
performance depends on
input quality

AutoAOIs Tracks moving AOIs
automatically

Object detection errors
possible

3D Reconstruction (e.g.
MAP3D)

Marker-free, works in
naturalistic settings

Computationally intensive,
complex setup

Despite recent advances, selecting an appropriate gaze mapping method
remains challenging. Performance often depends on data quality and the
research design. This underscores the need for systematic evaluation to
support an informed method selection.

The present study compares and evaluates three different methods for
mapping gaze points to AOIs against two baselines. This study considers:
(1) ArUco marker-based mapping anchoring AOIs in the physical setup, and
homography-based mapping that uses either (2) manual-defined reference
points or (3) feature detection to transform gaze data into the coordinate
space of the AOIs. The baselines include both manual gaze mapping and
assisted mapping using the commercial software Tobii Pro Lab. The methods
are tested in both laboratory and field study settings to compare their
accuracy and robustness.

The research question is “Can automated gaze mapping methods match
the precision achieved by manual mapping while reducing processing time in
complex environments?” with the following hypotheses:

1. H1: Automated gaze mapping methods (marker-based & homography-
based) will achieve accuracy comparable to manual mapping under
laboratory conditions.

2. H2: The accuracy of automated gaze mapping will decrease in field study
environments but will remain at or above 90% of the level of accuracy
reached by manual mapping.

3. H3: Automated mapping methods will considerably reduce processing
time (setup and execution time) compared to manual mapping.

4. H4: Among the automated methods, the marker-based method will
demonstrate consistently the highest overall accuracy across all settings.

METHODS

This chapter outlines the core functionality, and evaluation of the gaze
mapping analytical software, including its methods and test settings.

The goal of the analytical software is to determine exactly when and where
a person was looking by combining ET data with spatial markers visible
in the environment. The analytical software implements three methods to
choose from that spatially map gaze points, determine whether they fall
within predefined AOIs, and generate both visual and quantitative outputs
to support interpretation:
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1. Marker-Based Mapping: In this method, AOIs are defined directly within
the video frame by using ArUco markers detected dynamically in each
frame.

2. Feature Detection-Based Homography Mapping: This method uses
automatic feature detection to align each video frame with a predefined
reference image of the setting. A homography matrix is computed per
frame to transform gaze coordinates from the video into the reference
image coordinate system. This mapping method is useful when ArUco
markers are not always visible due to head movements.

3. Manual Reference Point-Based Homography Mapping: In this method,
the user manually defines reference points on both the reference image
and corresponding points in the video frames. These points are used to
compute a homography transformation that maps gaze coordinates from
the video to the reference image. ArUco markers can be used as known
reference points to facilitate accurate correspondence. This method is
appropriate when the setting has few distinct features.

Analytical Software Architecture

First the processing steps for gaze data are described in chronological order
referred by numbers. Before marker detection, the analytical software runs an
ET calibration to align gaze data with relevant elements of the setting. Offsets
between gaze points and targets are visually verified. The calibration uses
a Charuco board to estimate the ET camera’s intrinsic parameters (camera
matrix and distortion). Calibration images are processed to detect marker
and Charuco corners, which are used by OpenCV to compute the camera
model. Parameters are saved in undistorted, gaze-aligned frames. Calibration
is needed once per setting.

The overall processing pipeline of the analytical software is depicted in
Figure 1, with the two gaze mapping methods visualised in orange and
purple further detailed in Figure 2. User-defined inputs (in blue, on left side
in Figure 1) and outputs (in green, on right side on Figure 1) are further
described in the next chapter.

Following initial gaze data preparation (3), the first key processing step
is the ArUco marker detection (5) using OpenCV’s ArUco libraries, which
establishes a spatial reference by identifying markers frame by frame in the
video.

Once markers are detected, the system merges gaze and marker data
(7), synchronising data streams based on timestamps. If gyroscopic data
is available (8), it stabilises marker detection (9). When head movement,
measured by gyroscopic data, stays below a threshold, ArUco marker
detections are extrapolated, even if markers temporarily disappear.

The aligned data can then be processed by two gaze mapping methods
(10): marker-based (10a) or homography-based (10b). In the marker-
based mapping (10a), AOIs are calculated dynamically using ArUco marker
positions in each video frame. AOI hits are calculated, and the analytical
software overlays AOI outlines directly onto the ET video to support visual
inspection of gaze behaviour.
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Figure 1: Overview of the gaze mapping tool architecture.

In contrast, the homography-based mapping (10b) transforms gaze points
from video coordinates to a static reference image using a homography
matrix. This transformation can be based either on manually defined
reference points or on feature detection using Scale-Invariant Feature
Transform (SIFT) and Fast Library for Approximate Nearest Neighbors
(FLANN) (OpenCV, 2025).

In more detail, feature points are extracted from both the video frame
and reference image, with FLANN using a KD-tree (5 trees, 20 checks) for
efficient nearest-neighbour search in the 128-dimensional SIFT descriptor
space. Matches are found via k-nearest neighbours (k = 2) and ranked by
Euclidean distance. AOI hits are subsequently determined by mapping gaze
data onto the reference image.

Input and Output

The analytical software requires four main input data, as shown in Figure 1,
depending on the processing method: user-defined parameters (1), gaze
coordinates in pixels (optional including gyroscopic data) (2), ET video (4)
and a reference image (11). The video from the eye tracker is paired with gaze
data frame by frame. The analytical software is hardware-agnostic, given the
gaze coordinates are in the same 2D coordinate system as the video frames.
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Figure 2: Detailed visualisation of the two gaze mapping methods mentioned in
Figure 1.

The user defined parameters (1) include paths to the input files (gaze data
& ET video), flags to enable or disable certain steps like heatmap generation,
homography matching, or gyroscope integration and the definitions of AOIs.

Defining AOIs necessitates precise specification based on the spatial
configuration of marker positions. Each rectangular AOI is anchored to a
specific ArUco marker, identified by its unique marker ID and one of its four
corners, which serves as the reference point for AOI placement. In manual
reference point-based homography mapping, it is essential to specify the
positions of these markers in pixel coordinates within the reference image.
Based on this anchor, AOIs are defined by a name, a fixed size (width, height),
and an optional rotation. To allow flexible positioning, AOIs can also be
placed using an offset relative to the anchor, enabling precise specification of
AOIs. All parameters are specified in a Python-based configuration file.

Outputs (12 & 13) include several visualisations such as gaze plots,
heatmaps and AOI overlay on video. The analytical software compiles a
final report containing time series of AOI hits, number of fixations and mean
fixation dwell times per AOI. This report can be saved as a CSV or Excel file
for further analysis.

Validation Approach

The validation of automated gaze mapping is conducted with data from a
laboratory setting representing acceptable to ideal conditions for ET, and
two datasets from a field study incorporating typical challenges to ET such
as inconsistent lighting, and marker detectability. The three data sets are
described in Table 2.

Table 2: Description of validation data sets.

Screen Recording
(Laboratory)

Flight Simulator
(Field Study)

Train Cockpit (Field
Study)

Video duration [sec] 27 2030 1672
# of frames [-] 682 50751 41814
Sampling rate [Hz] 25 25 25
Gaze samples [%] 98 92 84
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The laboratory setting called “screen recording” represents an ideal setting
for automated gaze mapping: ArUco markers remained constantly visible,
lighting conditions were optimal, and gaze input was simulated using the
mouse cursor for better control. The first field study setting was a low-fidelity
flight simulator and the second was a train driver’s cab. The environment in
both field study settings exhibited high dynamic range lighting, with high
luminance contrast between the bright exterior view and the darker interior
of the cockpit/cab. Also, the tasks involved extensive head movements
shifting visual attention.

Validation involved comparing three automated gaze mapping methods
against two baselines: (i) manual mapping, regarded as the ground truth,
and (ii) automated gaze mapping provided by Tobii Pro Lab (Tobii Pro Lab,
2025). In the first, screen recording conducted under optimal conditions,
the baseline consisted of the actual recorded data, as both the mouse cursor
(used to simulate gaze) and ArUco markers were always visible and accurately
trackable.

Comparison of the gaze mapping methods is based on performance
metrics for time efficiency, accuracy of AOI hits (the proportion of correct
predictions), precision (the proportion of true positive hits among all
predicted positive hits), recall (the proportion of true positive hits among
all actual positive hits), and F1-score (the harmonic mean of precision and
recall). A server with 8×3.2GHz CPU cores, 16 GB of RAM and no GPU
was used for testing.

RESULTS

Computational Efficiency

To evaluate the computational efficiency of the analytical software, the setup
and execution time for each processing step was measured across all datasets.
Defining input parameters took 15 minutes for both homography methods,
with an extra 15 minutes for manual reference point-based mapping using
12 markers. These inputs are needed only once per setting.

The total computational time for all methods is shown in Table 3,
with homography matrix calculation times in brackets. Table 3 indicates
considerably higher computational costs for feature detection compared to
the manual reference point-based mapping. Most processing steps required
similar durations, except the homography matrix calculation. Manual
reference point-based mapping required between 75–97% less time than
manual mapping depending on the setting, while feature detection required
191% (flight simulator) and 173% (train driver’s cab) more time than the
manual gaze mapping.

Table 3: Total computational time (incl. time for homography matrix calculation
in brackets).

Method\Setting Screen Recording Flight Simulator Train Driver’s Cab

Baseline 10.4 min 119.3 min 104.3 min
Manual reference point 0.3 min

(0.02 min)
29.8 min
(0.5 min)

17.1 min
(0.6 min)

Continued
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Table 3: Continued

Method\Setting Screen Recording Flight Simulator Train Driver’s Cab

Feature detection 3.7 min
(3.6 min)

346.9 min
(334.8 min)

284.9 min
(278.6 min)

Accuracy Comparison

Table 4 shows the accuracy parameters calculated for mapping quality of the
gaze mapping methods in laboratory and field study conditions.

Table 4: Performance metrics for gaze-to-AOI mapping across methods and datasets.

Setting Method Accuracy [%] Precision [%] Recall [%] F1-Score [%]

Screen
recording

Tobii Pro Lab (manual/assisted) 93/1001 95/1001 92/1001 94/1001

ArUco-marker 97 96 98 97
feature detection 93 93 95 94
manual reference points 90 94 89 91

Flight
simulator

Tobii Pro Lab (manual/assisted) 1001/32 1001/94 1001/13 1001/23
ArUco-marker 70 85 72 78
feature detection 72 77 90 83
manual reference points 72 77 90 83

Train
driver’s
cab

Tobii Pro Lab (manual/assisted) 1001/NA2 1001/NA2 1001/NA2 1001/NA2

ArUco-marker 38 76 14 24
feature detection 14 24 16 19
manual reference points 77 82 91 86

1100% indicates it was the ground truth.
2NA indicates no valid gaze points were detected, preventing metric calculation.

Overall results indicate that the analytical software’s performance
varied across mapping method and setting. Manual reference point-based
homography generally showed consistent high accuracy (72–90%) and F1-
scores (83–91%) where reference points were well-defined across all three
datasets. In contrast, feature detection-based homographic mapping varied
in accuracy, reflecting differences in setting complexity affecting the fit of
reference image. Tobii Pro Lab, performed well in laboratory environments
but failed in complex field study settings.

Accuracy was highest for all gaze mapping methods in the laboratory
setting “screen recording” and lowest in the field study condition (train
driver’s cab), where the feature-based method showed poor precision and
recall due to inconsistent key point matching.

DISCUSSION

The results demonstrate that performance of the mapping methods highly
depends on experimental conditions. None of the three methods for
automated gaze mapping (marker-based, feature detection-based, manual
reference point-based mapping) showed sufficiently high accuracy across
all three experimental conditions. Results indicate that mapping accuracy
improved under more controlled conditions, with the highest accuracy
(>90%) across all three mapping methods. This can be attributed to the
highly controlled experimental environment, including consistent lighting,
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clear marker visibility and mouse-simulated gaze data. This confirms the
analytical software’s reliability under optimal conditions.

In more complex field study settings like the flight simulator and
train driver’s cab automated gaze mapping faces multifaceted challenges
such as lighting variability, motion blur, and moving backgrounds, which
degraded homography accuracy, especially for feature detection. These
findings highlight how sensitive homography-based methods are to visual
dissimilarities of the reference image and the video content. Marker-based
mapping, while more flexible, was sensitive to lighting conditions, as poor
illumination or glare often disrupted marker detection resulting in reduced
mapping reliability.

The performance of the analytical software partly depends on the accuracy
of ET calibration: small inaccuracies are generally tolerated, except near
AOI boundaries. The size of the AOI influenced mapping accuracy: small
AOIs increased mapping loss, while large AOIs risked inclusion of irrelevant
fixations.

Setup duration was similar across methods (15–30 minutes to define
reference images, parameters, and AOIs). Feature detection reduced manual
input but incurred higher computational costs and was highly sensitive to
uncontrolled conditions. Therefore, selecting a mapping method tailored
to the experimental setting, rather than applying all available methods
indiscriminately, can considerably reduce overall processing time.

Efficiency can be further improved by restricting the analysis to relevant
video segments, whereby reducing processing time without losing valuable
data. Future improvements need to focus on selecting reference image
adaptively to assure gaze-mapping accuracy in dynamic environments.
Table 5 provides a summary of the results in relation to the hypotheses under
investigation.

Table 5: Overview of hypothesis outcomes.

Hypothesis Outcome Explanation

H1 (accuracy in
laboratory
settings)

Supported Under controlled conditions, all
automated methods achieved high
accuracy comparable to the manual
baseline.

H2 (accuracy in
field study
settings)

Not supported Automated methods did not reach
90% accuracy in more complex
environments.

H3 (low processing
time)

Supported Automated methods reduced
processing time, though runtime
was increased for feature detection.

H4 (marker-based
superior)

Not supported Marker-based mapping was generally
accurate, but in some cases, manual
homography mapping
outperformed.
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CONCLUSION

Automated gaze mapping methods have the potential to considerably reduce
time and effort needed to analyse visual attention in complex environments,
as long as they maintain adequate accuracy.

This study compared three methods for automated gaze mapping (marker-
based mapping, feature detection-based homography mapping, and manual
reference point-based homography mapping) with manual mapping and
commercial mapping software. Mapping accuracy was evaluated across three
experimental conditions with varying complexity including a laboratory
condition (“screen recording”), and two field study conditions (“flight
simulator”, and “train driver’s cab”).

The results showed that accuracy of the methods for automated
mapping varied depending on environmental factors such as lighting
conditions, scene dynamics, and calibration accuracy of eye-tracking. While
automated methods achieved high accuracy in the laboratory condition, their
performance decreased with more challenging lighting conditions in field
study settings. The manual reference point-based method showed the most
consistent results across the three test settings. In terms of computational
efficiency, automated methods considerably reduced the need for manual
input, although feature-based homography induced higher processing times.

The results of the study highlight the trade-offs between accuracy,
automation of labour-intensive manual gaze-to-AOI mapping processes, and
runtime, as well as the importance of AOI definition and fit of the reference
image. The findings suggest that automated mapping is a viable alternative
to manual processing in laboratory conditions.

Future improvements will focus on optimising processing time, extending
visualisation capabilities, and increasing robustness to environmental
variability.

Outlook

This work lays a foundation for enhanced resilience in human-machine
collaboration by enabling accurate, real-time monitoring of visual attention
that is indicative for user situation awareness and intent, as well as
task execution through robust, automated gaze-to-AOI mapping. Future
implementations in human-machine systems could integrate real-time gaze
analysis to enhance safety by identifying instances when critical elements
are overlooked, thereby triggering timely, adaptive system responses.
Additionally, future work will explore adapting the analytical software to
process shorter time windows with dynamically selected reference images
to improve gaze mapping accuracy in visually changing environments. In
future, the analytical software’s architecture may integrate physiological and
contextual data streams, further supporting the development of adaptive,
attention-aware assistant systems in safety-critical domains such as aviation,
rail, and healthcare.
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