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ABSTRACT

Elbow exoskeletons have emerged as promising technologies in the field of wearable
robotics, offering assistance and support for tasks involving elbow flexion and extension.
Musculoskeletal disorders associated with the elbow are prevalent in occupational
environments, leading to work-related injuries and discomfort. Active elbow exoskeletons
with integrated sensors, actuators, and control boards have been proposed to mitigate
these issues by reducing joint strain and supporting repetitive tasks. The design and
control of elbow exoskeletons are essential to ensure effective assistance, user comfort,
and operational safety. Key design considerations include joint alignment, adaptability
to real-world tasks, and intuitive user interaction to enhance usability and acceptance.
Although current control strategies have made significant progress, they still require
improvements in terms of user adaptability, feedback responsiveness, robustness, energy
efficiency, and dynamic assistance. This study introduces a comprehensive methodological
framework to optimise control strategies in the ExoElbow. The primary focus is on
adapting assistive responses to individual user needs through real-time adjustments using
advanced neural network architectures. Neural networks enable the system to learn from
user inputs, adapt to feedback, model dynamic behaviours, and personalise assistance
strategies. Convolutional Neural Networks are used to extract spatial features from sensor
data, providing insights into user movement patterns and environmental cues while
supporting energy-efficient computation. Recurrent Neural Networks are employed to
capture temporal dynamics, enabling predictive assistance and smooth adaptation to
varying task demands, which are key for real-time, user-centred control. Together, these
models support intuitive human-machine interaction, such as brain-machine interfaces,
significantly enhancing the usability and responsiveness of the system. The proposed
control system dynamically adjusts assistive torque levels by continuously monitoring and
analysing sensory inputs, thereby optimising user experience while reducing discomfort
and strain. Validation strategies, including simulation and real-world experimentation, will
be used to assess performance and user satisfaction. By addressing the limitations in
adaptability, intuitive interaction, and energy efficiency found in existing approaches, this
research lays the foundation for smarter, more responsive assistive technologies in active
industrial exoskeletons.
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INTRODUCTION

Wearable robotics has gained significant traction in recent years, particularly
in the development of active exoskeletons designed to assist and augment
human movement. Among these, elbow exoskeletons are promising solutions
for mitigating musculoskeletal disorders, improving rehabilitation outcomes,
and enhancing workplace ergonomics (Herr, 2009). These devices offer active
assistance during elbow flexion and extension, reducing joint strain and
facilitating repetitive or physically demanding tasks. Despite their potential,
elbow exoskeletons’ effectiveness and adoption are heavily influenced by
their control strategies, which must ensure adaptability, user comfort,
intuitive interaction, and real-time responsiveness to varying task demands
(Young, 2017).

Current control approaches for elbow exoskeletons predominantly rely
on predefined assistance models or heuristic-based adaptation mechanisms.
Although these strategies offer a degree of support, they often lack the
flexibility required to accommodate diverse user needs, dynamic work
environments, and complex motion patterns (Kiguchi, 2012). Moreover,
many existing systems fail to integrate real-time learning capabilities, limiting
their ability to personalise assistance based on user feedback and evolving
task requirements. These challenges highlight the necessity for more advanced
control methodologies that enable seamless human-exoskeleton interaction
while maintaining efficiency and safety (Vélez-Guerrero et al., 2021).

This study introduces a novel methodological framework aimed at
optimising control strategies for the ExoElbow exoskeleton (former called
Elbow-side WINDER), which was developed at The Exosuits, Exoskeletons
and Wearable Robotics Laboratory (XoLab) of the Advanced Robotics
Department of the Italian Institute of Technology. The ExoElbow exoskeleton
is designed to assist with elbow flexion and extension during occupational
tasks by employing a medium-level control strategy comprising an arm
kinematics estimator, a load estimator, and a friction compensator. The arm
kinematics estimator relies on data from a three-axis accelerometer integrated
into the MYO device, which measures forearm movements to enhance
alignment with elbow dynamics. The load estimator calculates the external
weight being lifted, allowing for dynamic adjustments in the assistance
provided, while the friction compensator ensures smooth movement by
counteracting resistive forces. Testing has shown significant reductions in
muscle activation of the biceps brachii and triceps brachii during load-lifting
tasks, indicating effective ergonomic support and minimising discomfort
associated with joint misalignment (Park et al., 2023).

One deficiency observed in the approach taken with the ExoElbow
exoskeleton is its reliance on a single sensory system, the MYO, which may
limit the accuracy and responsiveness of the assistive torque provided. This
singular focus could lead to challenges in adequately capturing the complex
movements and forces experienced during various occupational tasks.
Furthermore, the existing control strategy does not account for potential
variations in muscle strength and activation patterns across different users,
which may result in unequal assistance or activation when lifting items
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of different weights. Without a more comprehensive sensory array or
adaptive feedback mechanisms, the exoskeleton may struggle to optimise its
performance across diverse user profiles and dynamic working environments.
These challenges underscore the importance of not only robust control
algorithms but also ergonomic and intuitive user interaction design, which
has been shown to significantly enhance usability and system effectiveness in
industrial exoskeletons (Moreno et al., 2024).

In this research, we aim to address these limitations by incorporating a
more robust multi-sensor system and implementing an advanced machine-
learning-based adaptive control strategy that can adjust dynamically to
individual user needs and task-specific demands. The proposed framework
enhances real-time adaptability and user-centred assistance. By employing
advanced machine learning techniques, such as Convolutional Neural
Networks (CNNs) for analysing spatial features of the sensor data and
Recurrent Neural Networks (RNNs) for capturing temporal dynamics, the
framework aims to optimise the control of the ExoElbow. This integration
will enable the exoskeleton to dynamically adjust assistive torque in response
to varying task demands and user feedback, ultimately facilitating a
more intuitive and efficient user experience in industrial and rehabilitative
applications.

Ultimately, this work aspires to bridge the gap between existing control
strategies and the growing demand for more intelligent, adaptable, and
user-friendly exoskeleton systems. By setting the foundation for future
advancements in wearable robotics, this study contributes to the broader
field of human-centred assistive technology, with potential applications in
the industrial sector.

METHODS AND MATERIALS

The ExoElbow has been developed to assist with elbow flexion and extension
in industrial settings, enhancing ergonomics and reducing physical strain.
The proposed system employs a medium-level control strategy that integrates
three control units: a) an arm kinematics estimator, b) a load estimator,
and ¢) a friction compensator. This control system is designed to assess
the dynamics of the user’s arm and external loads in real-time, providing
assistive torque during elbow flexion and extension tasks. By using data
from a single sensory system, the MYO, the control algorithm minimises
complexity and enhances overall performance while ensuring that the user
benefits from reduced muscle activation in the biceps and triceps during
load-lifting activities (Park et al., 2023). The following methods are required:

Stage 1 - Data Acquisition: The ExoElbow is equipped with a motion
capture system and electromyography (EMG) sensors to collect essential data
during its operation. The system measures muscle activation levels in the
biceps brachii and triceps brachii, providing insights into how effectively
the exoskeleton reduces strain during tasks. The analysis is based on these
muscle activation patterns and the kinematic changes measured using inertial
sensors, ensuring that the performance of the exoskeleton can be validated
against the intended user movements.
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Comprehensive data acquisition is critical for understanding user
intent and movements when operating the ExoElbow exoskeleton. This
multifaceted approach integrates various sensor technologies to ensure real-
time monitoring and adaptive responsiveness of the exoskeleton system. Key
sensors include:

Electromyography (EMG): Surface EMG sensors will be placed on the
biceps brachii and triceps brachii of both arms. This setup allows continuous
monitoring of muscle activation levels in real-time, providing insights into
the user’s physiological state during exertion. The EMG data will inform the
control algorithm of the user’s effort and fatigue levels, allowing for adjusted
assistive torque based on muscle activation patterns. Research has shown that
EMG feedback can significantly improve the performance of rehabilitation
devices by providing accurate estimations of muscle workload and activity
(Farina et al., 2014).

Inertial Measurement Units (IMUs): Accelerometers and gyroscopes will
be used to track the kinematics of the arm during motion. These sensors
provide valuable data on the angular velocity and acceleration of the arm,
which is essential for understanding how the exoskeleton interacts with user
movements. This information helps refine the control strategies by enabling
more precise detection of changes in posture and movement intent. Studies
have indicated that IMU data can be effectively used for real-time motion
analysis and have proven effective in various applications surrounding
wearable robotics (Haratian, 2022).

Electroencephalography (EEG): A cap fitted with multiple EEG electrodes
will monitor brain activity, particularly the motor cortices associated with
movement intention and execution. By capturing electroencephalographic
patterns, the system can gain insights into the cognitive aspects of motor
planning, allowing the control system to anticipate intended movements
before they occur physically. This neurofeedback mechanism facilitates
smoother interactions between the user and the exoskeleton, thereby
enhancing responsiveness and efficiency. Recent advancements in EEG
applications in wearable robotics have highlighted the potential of integrating
brain-machine interfaces for improved control and performance (Lebedev
and Nicolelis, 2006).

This multi-sensor approach will lay the groundwork for developing an
intuitive and adaptive exoskeleton that can respond to the specific needs of
the user, minimising discomfort and optimising assistive performance across
various occupational tasks.

Stage 2 - Adaptive Control Strategy: To enhance the performance of
the ExoFElbow exoskeleton, we propose an advanced adaptive feedback
mechanism using CNNs and RNNs. The proposed methodology aims to
improve the responsiveness and accuracy of assistive torque generation
adapted to individual user movements and muscle activation patterns.

The proposed architecture utilises a CNN in conjunction with a RNN to
analyse and process both EMG and IMU signals for an advanced exoskeleton
system. Here is a more detailed improvement and explanation of the process:

CNN for Feature Extraction: The CNN plays a crucial role in analysing
spatial features derived from the EMG and IMU data. The proposed
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architecture is designed to efficiently extract meaningful patterns from high-
dimensional input data, which is essential for understanding user intentions
during movement.

Input Layer: The CNN accepts time-series data segmented into fixed-size
windows. This structure ensures that the model processes consistent-length
inputs, which facilitates effective feature extraction.

Convolutional Layers: The architecture features multiple convolutional
layers, each containing different filters. These filters are crucial because
they allow the network to learn various characteristics of the spatial
distribution of muscle signals. For instance, some filters may emphasise
high-frequency activation patterns, whereas others focus on lower-frequency
trends, effectively capturing the unique signatures associated with diverse
movements or tasks. By identifying these activation patterns, the CNN can
discern the user’s intent, such as grasping or lifting an object.

Pooling Layers: Following the convolutional layers, the pooling layers
reduce the dimensionality of the produced feature maps, thereby reducing
the computational complexity while retaining the most significant features.
This step not only accelerates the processing time but also mitigates the risk
of overfitting by simplifying the model.

Output Layer: The final output of the CNN comprises a refined set
of features that capture user movements. These features carry critical
information, such as the timing and intensity of muscle activations, which will
inform subsequent control strategies for torque output in the exoskeleton.

Application of RNNs for Temporal Analysis: The RNN complements the
CNN by focusing on the temporal aspects of the data. Given the sequential
nature of the movement dynamics, this integration is vital for accurately
modelling changes over time.

Input to RNN: The feature vectors generated by the CNN serve as
sequential inputs to the RNN. This design allows the RNN to analyse the
time-dependent patterns in muscle activation and kinematic behaviour. The
model can recognise how prior movements influence future states, which is
especially important for dynamic tasks that require anticipation of motion
transitions.

RNN Structure: The RNN architecture is equipped to handle sequences of
varying lengths, which makes it adept at processing continuous inputs from
the user movements. By learning the temporal dependencies in the data, the
RNN enhances the system’s capability to foresee future user intentions and
adjust outputs accordingly.

Output Layer: The RNN ultimately produces a set of predictions of
the required assistive torque levels. This output is key for directing the
exoskeleton actuators and ensuring that the assistance offered aligns with
the predicted movement intention and timing of muscle activation. This real-
time response mechanism is crucial for providing seamless and intuitive user
support.

The integrated CNN-RNN model (illustrated in Figure 1) is specifically
designed to process the spatial and temporal patterns in physiological signals.
The proposed architecture has demonstrated high accuracy in classifying
EMG and movement-related signals in real-time applications (Li and Langari,

2022).
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Figure 1: The integrated CNN-RNN model.

In summary, the symbiotic integration of CNN and RNN enables a
sophisticated analysis of both the spatial and temporal features of muscle
signals, leading to enhanced exoskeleton performance when assisting users
with varied tasks. This architecture underscores the potential of advanced
machine-learning techniques in the development of adaptive and responsive
wearable robotic systems.

Stage 3 - Sensor Fusion Methodology: Recent advancements have
demonstrated that EEG integration significantly enhances motion intent
prediction when fused with EMG and IMU signals (Jackson and
Zimmermann, 2012). To seamlessly integrate and leverage EEG data along
with EMG and IMU signals, a sensor fusion framework will be developed as
follows:

Preprocessing of EEG Signals: EEG signals will be filtered to remove noise
using techniques such as band-pass filtering (0.5-40 Hz) and Notch filtering
(50 Hz) to eliminate electrical interference. The pre-processed EEG data will
be segmented into overlapping time windows corresponding to the periods
of interest.

Fusion Algorithm: A Kalman filter or a complementary filter is used for
real-time sensor fusion of EEG, EMG, and IMU signals. The algorithm will
combine the predictive outputs from CNN and RNN models with the real-
time data provided by sensors to optimise the estimation of motor intent.

State Prediction: The algorithm predicts the state of user activity based
on the fused sensor signals, adjusting weights dynamically based on the
reliability of each sensor input.

Feedback Loop: Continuous feedback from the integrated sensory system
allows the exoskeleton to adaptively modify its assistive torque in response
to user needs detected through both muscle activation patterns and neural
signals.

Figure 2 illustrates the fusion architecture in which EEG, EMG, and IMU
signals are integrated using a Kalman filter to estimate motor intent. The
proposed hybrid sensor framework enables robust real-time estimation of
the user’s motor state, thereby improving responsiveness of assistive torque
delivery (Zou et al., 2025).
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Figure 2: Sensor fusion framework integrates EEG, EMG, and IMU via Kalman filtering
to enhance motor intent detection and adaptive control in the elbow-side WINDER
system.

Stage 4 - Experimental Protocol: Fifteen healthy participants will be
recruited to evaluate the effectiveness of the proposed adaptive feedback
mechanism. Each participant will undergo a series of tasks involving lifting
and lowering objects of varying weights while wearing the ExoElbow
exoskeleton. Throughout the trials, data from all sensors will be
recorded for analysis, allowing the evaluation of adaptive assistance and
overall performance improvement compared to traditional control methods.
Statistical analyses will be conducted to determine the significance of the
findings across various conditions and tasks.

By employing this innovative approach, we aim to create a highly
responsive exoskeleton that maximises user comfort and reduces the risk of
musculoskeletal disorders in industrial settings.

Stage 5 - Expected Evaluation of Adaptation and Method Integration:
The proposed hybrid framework—integrating EEG, EMG, and IMU signals
through deep learning and sensor fusion—will be evaluated using a set of
performance metrics that reflect responsiveness, intuitiveness, adaptability,
and efficiency. Although experimental validation is reserved for future work,
the following expectations outline how the framework is designed to assess
its efficacy:

Real-Time Motor Intent Prediction: The CNN-RNN architecture is
expected to improve the classification accuracy of dynamic motor intentions
by capturing both the spatial and temporal features of biosignals. The
anticipated outcomes include high classification accuracy (e.g., >90%) and
prediction-to-actuation latency under 600 milliseconds, supporting real-time
assistive control.

Torque Adaptation Performance: The Kalman filter-based sensor fusion
is designed to yield a dynamically updated torque profile that adapts to
changing motor states. The output is represented as a time-varying control
vector that is expected to modulate torque based on user intent and the
biomechanical context. Performance would be evaluated by comparing the
predicted torque adjustments with those of the reference biomechanical
models or user feedback.

User Effort Reduction: Post-deployment, EMG signal amplitude
comparisons between assisted and unassisted conditions are expected to
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quantify reductions in muscle effort. A successful outcome would show
a statistically significant decrease in muscular activation during typical
upper-limb tasks (e.g., a 2-4 x reduction), indicating effective support.

Task Performance in Simulated Scenarios: User trials (in simulation or
physical prototype environments) would assess task completion success rates,
completion time, and user comfort. Tasks may include object manipulation,
repetitive reaching, or resistive movements, which are chosen to reflect daily
living activities.

Comparison with Baseline or Unassisted Conditions: Evaluating the
framework against baseline (non-adaptive or non-assisted) conditions will
be key in quantifying improvement. This includes measuring reductions
in task execution time, smoother torque transitions, and lower signal
misclassification rates.

System Adaptability and Robustness Over Time: Future assessments will
monitor the consistency of prediction accuracy, adaptation quality, and
system stability across multiple sessions and users, reflecting real-world
applicability.

RESULTS AND DISCUSSION

This study introduces a comprehensive methodological framework to
optimise the control strategies of the ExoElbow exoskeleton, which utilises
a novel joint alignment mechanism and an adaptive control strategy
to enhance usability in industrial settings. Our experimental design is
oriented towards evaluating the exoskeleton’s performance in assisting elbow
flexion/extension. Although the system is currently in the methodological
development stage, the design and integration of its components allow
for well-founded expectations of performance based on established sensor
processing and machine learning approaches.

Part 1 - Design and Mechanism Evaluation: The ExoElbow incorporates
a self-alignment mechanism that effectively decouples the rotational and
translational movements of the elbow joint. This feature aligns the centre
of rotation (CoR) of the exoskeleton with that of the user’s anatomical
elbow joint, which is essential for providing optimal assistance during
tasks requiring frequent elbow flexion and extension. The initial tests
demonstrated that the joint alignment mechanism contributed to smoother
motion during activities while minimising the risk of joint misalignment and
discomfort.

Additionally, the proposed actuation mechanism aims to reduce the overall
size and inertia of the device, which is critical for maintaining agility and
ease of use in work environments where movement is often constrained.
The compact design was well-received in the preliminary feedback sessions,
highlighting the importance of addressing traditional limitations associated
with bulky exoskeleton designs.

Part 2 - Control Strategy Development: A central innovation of this
framework is its adaptive control strategy, which is driven by a hybrid
CNN-RNN model and sensor fusion of EEG, EMG, and IMU signals.
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The evaluation of this adaptive system will be based on the following key
performance expectations:

Real-Time Motor Intent Prediction: The CNN-RNN architecture is
expected to provide robust recognition of motor intent by extracting both
spatial (via CNN) and temporal (via RNN) features from EMG and IMU
signals. High classification accuracy (expected >90%) and low prediction-
to-actuation latency (<600 milliseconds) are critical metrics for validating
intuitive and responsive control.

Adaptive Torque Output: Through Kalman filter-based fusion of EMG,
IMU, and EEG data, the system dynamically generates a control vector
representing assistive torque profiles. These systems are expected to
adapt in real-time to user biomechanics, thereby reducing over-assistance
or delay in support. Performance will be evaluated by comparing the
estimated torque profiles with the user-reported comfort and objective task
data.

Muscle Effort Reduction: The reduction in EMG signal amplitude during
assisted tasks (compared to unassisted or baseline control) will be used as
a proxy for user effort. A successful implementation is expected to yield a
2-4x decrease in muscle activation, particularly in the biceps and triceps
during lifting and lowering tasks.

Task Performance and Responsiveness: Simulated or physical trials will
track task completion time, success rate, and perceived user comfort during
activities such as object manipulation and resistive movement. These metrics
provide insights into the practical benefits of adaptive control under real-
world conditions.

System Adaptability and Robustness: Over multiple trials and
users, consistent control performance (e.g., stable torque output, low
misclassification rates) is critical for demonstrating system reliability.
Longitudinal data will be used to assess whether the adaptive system
maintains performance over time and accommodates inter-user variability.

Part 3 - Future Work Directions: Future studies will aim to
comprehensively validate the ExoElbow’s performance across diverse
operational tasks. In addition to quantifying reductions in muscle activation
(via EMG) and analysing joint kinematics (via IMUs), future assessments will
include user experience metrics, such as perceived comfort, cognitive load,
and exertion. These multidimensional metrics are essential to determine
the exoskeleton’s real-world efficacy and ergonomic benefit in industrial
environments.

Moreover, the iterative refinement of the control architecture will
be guided by empirical data on system adaptability and responsiveness
under dynamic task conditions. This includes evaluating the real-time
prediction accuracy of motor intent, responsiveness of torque adaptation,
and consistency of performance across users and sessions, ensuring that the
system aligns with both biomechanical demands and operator expectations.

An important direction for enhancing control efficiency is the integration
of Spiking Neural Networks (SNNs) into the control loop. SNNs, which
emulate the temporal dynamics of biological neurons, offer event-driven
processing that can significantly reduce computational and energy costs
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(Roy et al., 2019; Tavanaei, 2019). Their ability to process sparse,
temporally encoded inputs aligns well with biosignal data, such as
EMG and EEG data, and can support low-latency, low-power control
without sacrificing responsiveness (Lora-Millan et al., 2022). By leveraging
SNN-based architectures, future ExoElbow iterations may achieve more
sustainable energy profiles, improved user satisfaction, and extended
operational durations, ultimately enhancing the system’s viability for long-
term deployment in industrial applications.

CONCLUSION

In this methodological research, we introduced the design principles and
control strategies for the ExoElbow exoskeleton, highlighting its potential
applications in industrial settings. The unique joint alignment mechanism
paired with an adaptive control framework presents a promising approach
for enhancing worker performance and safety by minimising the physical
burden associated with repetitive elbow movements.

Although this study has laid the groundwork for further experimental
validation, it underscores the significance of a thoughtful design and control
methodology in developing effective wearable technologies. Our future work
will aim to apply these concepts in controlled experiments to substantiate
the exoskeleton’s functionality and usability, ultimately contributing to
advancements in ergonomic assistive devices in the workplace.

REFERENCES

Farina, D., Colombo, R., Merletti, R., & Baare Olsen, H. (2001). Evaluation of intra-
muscular EMG signal decomposition algorithms. Journal of Electromyography
and Kinesiology, 11(3), 175-187. https://doi.org/10.1016/51050-6411(00)
00051-1

Haratian, R. (2022). Motion Capture Sensing Technologies and Techniques: A
Sensor Agnostic Approach to Address Wearability Challenges. Sensing and
Imaging, 23(1), 25. https://doi.org/10.1007/s11220-022-00394-2

Herr, H. (2009). Exoskeletons and orthoses: Classification, design challenges and
future directions. Journal of NeuroEngineering and Rehabilitation, 6(1), 21.
https://doi.org/10.1186/1743-0003-6-21

Jackson, A., & Zimmermann, J. B. (2012). Neural interfaces for the brain and spinal
cord-restoring motor function. Nature reviews. Neurology, 8(12), 690-699.
https://doi.org/10.1038/nrneurol.2012.219

Kiguchi, K., & Hayashi, Y. (2012). An EMG-Based Control for an Upper-Limb
Power-Assist Exoskeleton Robot. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(4), 1064-1071. https://doi.org/10.1109/
TSMCB.2012.2185843

Lebedev, M. A., & Nicolelis, M. A. (2006). Brain—-machine interfaces: Past, present
and future. TRENDS in Neurosciences, 29(9), 536-546.

Li, Q., & Langari, R. (2022). EMG-based HCI Using CNN-LSTM Neural Network
for Dynamic Hand Gestures Recognition. IFAC-Papers Online, 55(37), 426-431.
https://doi.org/10.1016/j.ifacol.2022.11.220



314 Asgharpour et al.

Lora-Millan, J. S., Moreno, J. C., & Rocon, E. (2022). Coordination Between Partial
Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control
Strategies. Frontiers in Bioengineering and Biotechnology, 10, 842294. https://
doi.org/10.3389/fbioe.2022.842294

Moreno E, O. A., Lambranzi, C., Pitzalis, R., Sposito, M., Asgharpour, M., Park,
D., Di Natali, C., Monica, L., Caldwell, D. G., & Ortiz, J. (2024) “Evaluating
ergonomic design: A user command interface for industrial exoskeletons”,
proceedings of the 12th International Conference on Human Interaction and
Emerging Technologies (IHIET, 2024), Venice, Italy. https://doi.org/10.54941/
ahfe1005497

Park, D., Di Natali, C., Sposito, M., Caldwell, D. G., & Ortiz, ]J. (2023). Elbow-side
WINDER (Elbow-side Wearable Industrial Ergonomic Robot): Design, control,
and validation of a novel elbow exoskeleton. Frontiers in Neurorobotics, 17,
1168213. https://doi.org/10.3389/fnbot.2023.1168213

Roy, K., Jaiswal, A. & Panda, P. (2019). “Towards spike-based machine intelligence
with neuromorphic computing.” Nature, 575, 607-617. https://doi.org/10.1038/
s41586-019-1677-2

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019).
Deep learning in spiking neural networks. Neural Networks, 111, 47-63. https://
doi.org/10.1016/j.neunet.2018.12.002

Vélez-Guerrero, M. A., Callejas-Cuervo, M., & Mazzoleni, S. (2021).
Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb
Rehabilitation: A Review. Sensors, 21(6), Article 6. https://doi.org/10.3390/
s21062146

Young, A. J., & Ferris, D. P. (2017). State of the Art and Future Directions
for Lower Limb Robotic Exoskeletons. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 25(2), 171-182. https://doi.org/10.1109/
TNSRE.2016.2521160

Zou, H., Wu, Q., Yang, L., Zhu, Y., & Wu, H. (2025). Design and EMG-EEG Fusion-
Based Admittance Control of a Hand Exoskeleton with Series Elastic Actuators.
IEEE Transactions on Medical Robotics and Bionics, 7(1), 347-358. https://
doi.org/10.1109/TMRB.2024.3503899



	Intelligent Elbow Exoskeleton Control: A Neural Network-Based Framework for Optimized Performance
	INTRODUCTION
	METHODS AND MATERIALS
	RESULTS AND DISCUSSION
	CONCLUSION


