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ABSTRACT

This paper presents a novel prototype for a biofeedback system that uses real-
time physiological data to detect task-related stress during everyday computer use,
with electrodermal activity (EDA) and photoplethysmography (PPG) sensors directly
integrated into a computer mouse. By continuously monitoring stress levels with
this data, the system enables immediate, adaptive responses to elevated stress
levels, aimed at reducing cognitive load. These responses take the form of on-
screen, evidence-based mental health exercises designed to enhance user well-
being. The interventions, drawn from Cognitive Behavioral Therapy (CBT) and
Dialectical Behavioral Therapy (DBT), are delivered through context-aware, discreet
pop-up windows that gently prompt users toward stress-reduction behaviors. An
exploratory user study found that participants responded positively to the system’s
ease of use, its ability to deliver timely support, and its potential to simplify self-
directed mental health care through non-intrusive measures. Early findings point
to strong user receptivity and validate the concept of embedding stress-responsive
interventions into routine computing workflows. While further development is
needed to improve personalization, comfort, and model accuracy, this work offers
a compelling foundation for future systems that aim to deliver accessible, low-effort
mental health support in real time.
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INTRODUCTION

Digital devices are central to work and learning environments, and the
relationship between users and technology is marked by convenience
and efficiency but also growing cognitive and emotional strain. In both
professional and academic contexts, stress has emerged as a critical side
effect of prolonged computer use. Recent studies suggest that up to 80%
of employees experience stress related to digital tasks, negatively affecting
focus, productivity, and decision-making capacity (Robinson, 2024).

Stress, particularly in short bursts, also known as acute stress, can arise
during challenging digital tasks such as meeting deadlines, handling system
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errors, or processing large volumes of information. Physiologically, this
form of stress produces measurable changes in heart rate variability (HRV)
and skin conductance (Huang et al., 2022). Over time, acute stressors
that consistently occur without recovery can lead to chronic stress, with
consequences ranging from cognitive fatigue to long-term health risks like
cardiovascular strain and cognitive impairment (Chu et al., 2024).

Many existing physiological monitoring systems are reliant on external
wearables that users must consciously adopt and maintain. Although these
devices can be effective, they introduce friction into daily workflows and limit
scalability for continuous stress tracking. This project aims to explore the
introduction and effectiveness of The Biomouse System: a biofeedback-driven
system that integrates PPG and EDA sensors into an ergonomic computer
mouse to detect stress. During natural computer mouse use, physiological
data is collected from the embedded sensors to pass into a machine learning
(ML) classification model to recognize elevated stress levels. If stress is
detected, an on-screen intervention is pushed towards users to reduce stress.

The Biomouse System is an exploratory design research study that aims
to mitigate short-term stress through timely interventions to prevent the
accumulation of long-term stress over prolonged use. By embedding stress
detection and responses into a familiar interface, the system offers a seamless
experience that requires no additional effort from users and adapts digital
environments to support user well-being.

PRECEDENT WORK

Physiological Sensing for Stress Detection

Physiological signals such as EDA, also known as galvanic skin response
(GSR), and PPG have become widely used in affective computing to infer
multiple emotional states, including stress. These signals offer continuous,
passive, and non-invasive insight into users’ internal experiences. Researchers
have validated EDA as a proxy for sympathetic nervous system activity,
particularly emotional arousal (Picard et al., 2001), while PPG is commonly
used to derive HRV, a well-established indicator of stress-related autonomic
change (Namvari et al., 2022).

Affective computing studies have demonstrated that machine learning
models trained on features derived from EDA and PPG can classify stress
in both controlled and real-world settings (Picard et al., 2001; Rahma et al.,
2022; Lazarou & Exarchos, 2024). Studies have also explored combining
GSR and PPG to build accurate stress classifiers using machine learning
frameworks, achieving high precision and recall in dynamic environments
(Namvari et al., 2022; Nechyporenko et al., 2024; Nath et al., 2022).

Efforts to embed such sensing into everyday hardware have appeared in
a variety of instances. For example, CogniMouse integrates PPG, GSR, and
other sensors (e.g. grip force, temperature) into a standard computer mouse
to passively monitor users’ stress. The data is processed through probabilistic
models to detect cognitive strain in real time (Belk et al., 2016). This device
demonstrates the feasibility of integrating biosensors into familiar form
factors like the mouse, offering a low-friction pathway for everyday stress
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monitoring. However, this system stops at sensing. Even when emotional
states are inferred, intervention delivery is treated as future work. This points
to a critical gap: real-time sensing has not yet been systematically linked with
real-time stress interventions.

Digital Interventions for Stress

In parallel, a growing body of clinical and human-computer interaction
(HCI) research supports the effectiveness of digital stress interventions
grounded in cognitive-behavioral therapy (CBT) principles. Techniques such
as cognitive reframing, deep breathing, and grounding exercises have been
shown to reduce self-reported stress, especially when delivered in structured,
guided formats. Meta-analyses have confirmed that web-based interventions
incorporating these techniques are more effective when they include system
guidance or therapist support (Heber et al., 2017).

In applied HCI research, CBT-based micro-interventions delivered via a
browser plugin during natural breakpoints (such as mouse inactivity) reduced
stress by 23% among remote workers (Tong et al., 2023). This highlights the
importance not only of content but also of timing in maximizing intervention
effectiveness.

Timing, Autonomy, and Calm Interactions

Recent research has emphasized that for digital stress interventions to be
accepted and effective, they must be delivered at the right time and respect
user autonomy as they prefer interventions that give them the choice to
engage or defer them (Howe et al., 2022). Stress management mechanism is
more effective when paired with user-centered delivery mechanisms. The field
of calming technology also informs this space, advocating for systems that
support users without disrupting their primary activities. Interventions like
the 54321 grounding exercise, commonly used in CBT and DBT, are simple,
quick, and engaging as activity choices. These exercises require moderate
effort, are empirically supported, and can be delivered unobtrusively through
text or visual guidance, making them ideal for contexts of acute stress or
anxiety (Howe et al., 2022).

Gaps

Despite advances in both physiological sensing and digital intervention
design, few systems have meaningfully combined these capabilities. Existing
work tends to focus either on passive stress detectionwithout a corresponding
action loop, or on self-guided interventions that do not adapt based on
individual users’ physiological states. Even previously mentioned sensor-
augmented mice have not been deployed in systems that deliver real-time,
personalized interventions. Conversely, studies like Home Sweet Office
demonstrate that micro-interventions can be both timely and effective, but
rely on behavioral context (e.g., mouse inactivity) rather than physiological
input (Howe et al., 2022).

Thus, there is a clear opportunity for systems that unify validated stress
detection techniques (e.g., EDA and PPG), ML-driven stress inference, and
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CBT- and DBT-informed on-screen interventions into a cohesive, feedback
loop. Such systems should not only detect when users are stressed but respond
adaptively, supporting well-being through evidence-based, user-centered
interventions.

SYSTEM

We present an integrated system for real-time stress detection and
intervention delivery, as presented in Figure 1. The system includes a
biosensing computer mouse embedded with PPG and EDA sensors, which
continuously collect physiological data. This data is processed locally by an
ML model trained to detect stress states. When elevated stress is identified,
the system offers evidence-based digital interventions through a persistent on-
screen interface. Users can engage with these interventions at their discretion,
supporting timely but non-intrusive stress management.

Figure 1: An overview of the biomouse system.

Prototype Description

Mouse Design
Figure 2 shows the construction of the Biomouse Prototype with a Gravity
PPG Heart Rate Monitor Sensor for Arduino and a Fermion MAX30102
PPG and Oximeter Sensor, both connected to an Arduino Nano ESP32.
The mouse is ergonomically shaped with a smooth, ridge-free surface: the
thumb naturally engages the PPG sensor through grip pressure, and the palm
contacts the EDA sensors via resting weight. Its symmetrical form supports
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both left- and right-handed users, ensuring inclusive and unobtrusive
biofeedback collection. This ergonomic design supports accurate real-time
data collection and delivery to the backend ML system for stress-level
analysis.

Figure 2: (a) Internal PPG and EDA sensor placement. (b) External view of the biomouse
prototype.

Machine Learning Model
The computer mouse collects readings from the EDA and PPG sensors
embedded in the computer mouse, with 50 raw values collected each
second. To train and develop the ML model, tens of thousands of EDA and
PPG measurements over time were collected and segmented into 10-second
windows. Approximately 40 minutes worth of self-labelled stress data and
40 minutes worth of self-labelled non-stress data were collected from one
individual for training data. With this time series data, from each 10-second
window, we extracted a diverse set of statistical and frequency-domain
features, presented in Figure 4. These features were used to train a Random
Forest classifier to distinguish between stressed and non-stressed states.

Figure 3: The architecture of the ML model.
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ARandom Forest classifier was selected due to its ability to model complex
relationships between features and its robustness in handling imbalanced
or noisy physiological data. This classifier requires less data compared to
a neural network and captures patterns of data without a linear relationship
in a more improved manner, as is the case with EDA and PPG data. Our
approach effectively reflects physiological patterns associated with stress,
demonstrating the potential of ML for real-time stress classification.

Feature Extraction
The preprocessing and feature extraction pipeline transforms raw time-series
data into statistical and domain-specific features. A sliding window approach
is employed, where fixed length overlapping windows are used to segment
the data. For each window, the features are computed to capture both time-
domain statistical properties and physiological characteristics relevant to
stress detection, as seen in Figure 4.

Figure 4: The listed features of the ML model.

Model Training and Evaluation
The dataset is split into training and testing sets using an 80–20 split. The
training dataset consists of labeled measurements of these physiological
signals collected during resting and stressed conditions. The performance of
the classifier is evaluated using k-fold cross-validation where k = 5. Metrics
such as accuracy, precision, recall, and F1-score are reported to assess the
model’s effectiveness, presented in Figure 5.

Figure 5: The precision, recall, and F1-score of the model on a test dataset of one
subject.
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Intervention Interface Design
The intervention interface was implemented as a persistent pop-up window
that remains passively available during computer use and becomes active
when the system detects elevated stress. Built using Python’s tkinter library,
the window is designed to run continuously in the background without
disrupting user workflow.

When triggered by the stress classification model, the interface prompts
the user with a calming intervention sequence and presents the option to
begin or defer, maintaining a core principle of user agency. This design choice
aligns with recent findings in digital mental health tools that emphasize
the importance of just-in-time interventions combined with user control
(Howe et al., 2022).

The user interface was designed to support relaxation, focus, and sustained
engagement during interventions. Color plays a central role in emotional
regulation, where soft gradients in cool tones, primarily greens and blue, are
shown to reduce stress (Moeller, 2024), and were thus used to initiate the
CBT and DBT interventions. As each exercise concludes from a total of 5
exercises, the palette transitions to warmer hues such as orange and yellow,
which are associated with motivation and alertness, subtly guiding the user
back to their working state (Moeller, 2024).

Layout and interaction design follow user interface (UI) design principles
that reduce cognitive load through clear visual hierarchies, minimal text,
large touch targets, and low-contrast, but legible typography (Khakal, 2023).

There are two sequences of interventions implemented in the system.
Presented in Figure 6, the first intervention is a grounding exercise,
introduced through a pop-up window that asks the user whether they would
like to begin, giving them the agency to decide whether they want to manage
their emotional state. If accepted, the user is guided through a slow, soothing
animation with gentle lighting, prompting them to identify: five things they
can see, four things they can touch, three things they can hear, two things
they can smell, and one thing they can taste, presented in Figure 6. This
sensory-based exercise aims to aid the user in reconnecting with physical
surroundings, reducing dissociation, and gaining emotional awareness.

Figure 6: (a) Before the intervention, a prompt asks if the user wants to proceed, giving
the user agency. (b-f) Grounding exercise guiding the user to reconnect with their
physical surroundings, reduce dissociation, and increase emotional awareness.
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Presented in Figure 7, the second intervention is a breathing exercise with
minimal, purposeful animation that can enhance focus and reduce cognitive
burden (Johnson, 2024). The user follows a guided inhale-exhale rhythm
synchronized with a slow, rippling animation, aiming to increase bodily
awareness and reduce physiological and psychological tension. Collectively,
these design strategies contribute to an emotionally intelligent, low-friction
interface with the goal of encouraging consistent and meaningful engagement
with well-being activities.

Figure 7: (a) “Breathe in” animation guiding the user to inhale slowly. (b) “Breathe
out” animation with expanding ripple effect to support gradual exhalation. Together,
these visuals guide a paced breathing exercise aimed at improving bodily awareness
and reducing physiological tension.

EVALUATION OF PROTOTYPE

Methodology

The Biomouse System is designed for everyday computing contexts, including
academic, personal, and professional environments where individuals
regularly engage in digital tasks. To assess user perceptions and early usability
of the system, we conducted an exploratory user study with 8 participants
simulating typical computer-based activities.

Participants were recruited through university mailing lists and posters
across campus common areas. Eligible participants were required to use
computers for at least 3 hours daily. A total of 10 individuals (ages 19–34)
participated voluntarily, with the first 2 participants as pilot testers not used
for analysis purposes. All users provided informed consent in accordance
with the university’s IRB-approved protocol.

Figure 8 shows the experimental setup, with the Biomouse connected
to a laptop. On the laptop, participants completed two tasks that mimic
common digital activities: reading a news article on The New York Times
for 10 minutes and playing a 10-minute interactive game of Simon Says
(https://freesimon.org/). When a participant’s stress level was elevated during
the task, the system prompted one of two interventions, which the participant
could choose to accept or reject. If no intervention was triggered during
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those 10 minutes, participants had the option to explore an intervention after
completing the task. At the start of the session and after each intervention,
participants were asked to self-report their stress levels in a series of questions
in a survey, using the Depression, Anxiety, and Stress Scale – 21 Items
(DASS-21), a validated instrument commonly used in psychological and
HCI research to assess emotional states over short time periods (Lovibond,
1995). At the end, the last part of the survey evaluated the system on three
dimensions: ease of use (1 = very difficult, 5 = very easy), comfort (1 = very
uncomfortable, 5 = very comfortable), and improvement of mood (1 = no
improvement, 5 = significant improvement). Participants also provided
open-ended feedback on their overall experience with the system.

Figure 8: (a) Biomouse with sensors activated and connected to a laptop. (b) Study
setup showing a participant interacting with the system during the breathing exercise.

Results

Participants rated the system an average of 3.43 out of 5 in ease of use
and comfort, indicating moderate usability of the system. While these scores
suggest opportunities for refinement, particularly in ergonomic design and
system onboarding, they also indicate that the system is largely accessible
and tolerable in its current form. Notably, the average rating for impact on
mood was 3 out of 5, suggesting that users perceived a neutral to moderately
positive effect on their emotional state after using the system.

Qualitative feedback further supports the promise of the system.
Several participants responded positively to the integration of interventions,
particularly during the Simon Says task, where real-time interventions were
seen as both engaging and supportive. One user remarked, “It was nice to
be guided through different mindfulness exercises that could calm you down
without having to search these up.” This feedback highlights the potential
of automatic, passive interventions, reinforcing the value of a system that is
context-aware and requires minimal user effort.

Discussion

Although exploratory in nature and limited by a small sample size, this
study offers promising insights into the feasibility of embedding real-time
biofeedback and intervention into everyday computing workflows. The
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neutral-to-positive mood impact rating and favorable qualitative responses
suggest that users are receptive to systems that can detect stress and deliver
helpful interventions requiring low effort.

The modest usability and comfort ratings indicate the need for
improvements in the system’s physical and interactive design. Potential
enhancements include more intuitive onboarding, more responsive feedback
mechanisms, and more personalized interventions. However, the fact that
participants found the system manageable even in its early prototype stage
suggests a strong foundation for future iterations.

While broader testing is necessary to generalize findings, the current
feedback validates the idea that low-effort, context-aware interventions
can be meaningfully incorporated into digital experiences. As we continue
to refine the system, aligning self-reported stress levels via DASS-21 with
physiological data will be critical in strengthening the stress classification
model and validating the effectiveness of interventions in real-world use.

While this evaluation does not aim to produce definitive claims, it
contributes valuable formative insights that will guide future design
improvements and expanded testing. These findings support the broader
vision of The Biomouse System as a promising tool for real-time stress
detection and intervention in everyday computing contexts.

DISCUSSION

Implications

The findings reinforce prior research advocating for low-effort, just-in-time
interventions delivered through ambient or passive systems (Belk et al.,
2016). The ability to remind participants of their psychological needs without
relying on self-awareness, and to engage them with mindfulness content
without requiring them to search for tools or navigate complex interfaces,
highlights a promising pathway for scaling emotional regulation tools in
knowledge work settings. Moreover, the prototype’s use of a common
interaction device, the mouse, lowers the barrier for deployment and avoids
requiring users to adopt unfamiliar hardware.

The positive responses to the intervention sequences, particularly the
grounding exercise, suggest that well-timed, sensory-focused content can
foster meaningful moments of self-regulation during computer use. This
aligns with growing interest in designing emotionally intelligent systems that
respond to internal rather than purely behavioral triggers.

Limitations

Several limitations shape the scope of our findings. First, the small sample
size (n = 8), the limited demographic diversity of participants, primarily
drawn from the Providence campus community, and the short study duration
limit the generalizability and statistical power of our evaluation. Future
work should expand to longitudinal studies with a more diverse population
to assess the sustained impact of such systems and refine the adaptive
mechanisms of the system over time.
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Second, although the machine learning model for stress classification
demonstrated relatively high accuracy on the available data, its
generalizability is limited due to the small size and lack of diversity in
the training dataset. The model was trained on a relatively small corpus
of paired physiological and self-reported stress data, which constrained
its generalizability across users. Future development should prioritize
expanding the training dataset accompanied secondarily by improving
feature engineering and refining model architecture to strengthen predictive
performance. Regarding feature engineering, exploring features that consider
individual physiological baseline values would allow the model to be
personalized to each user to better ensure more timely interventions. This can
enhance the user experience of the system’s responsiveness and intrusiveness.

Third, although the interface aimed to minimize disruption, a few
participants mentioned that even passive pop-up windows can introduce
context switching. This highlights a delicate balance: systems must be
noticeable enough to prompt emotional regulation but subtle enough not
to introduce additional cognitive load. Exploring more seamless forms of
intervention delivery such as ambient displays or haptic feedback may
address this challenge.

Finally, the interventions themselves were limited in scope, consisting
of two predefined sequences. Future work should expand the intervention
library, exploring the feasibility and effectiveness of the 160 previously tested
on-screen micro-interventions across four therapy domains including meta-
cognitive, cognitive-behavioral, somatic, and positive psychology. Other
areas for improvement in the intervention include personalizing suggestions
based on prior engagement, stress profile, or user preference to support a
diverse range of user needs (Tong, 2023).

CONCLUSION AND FUTURE WORK

In conclusion, by integrating physiological sensing directly into a familiar
computing device, our work presents a novel interdisciplinary approach
aimed to evaluate the integration of a mental health support system in a
computer mouse utilized in everyday digital tasks. Through the participant
testing, The Biomouse System demonstrates the potential to seamlessly embed
wellness support into everyday technology, helping users manage short-term
stress and maintain balanced long-term stress levels without requiring heavy
effort.

Future iterations of this work should be built upon the aforementioned
limitations. With further refinement and user-centered iteration, The
Biomouse System could evolve into a widely accessible system for promoting
emotional well-being in digital environments.
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